首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 152 毫秒
1.
A controlled burning scheme, in conjunction with experimental plots, was necessary in order to investigate the effects of fire on tree regeneration in an area which otherwise suffers frequent uncontrolled fires and where an important tree species, Acacia gerrardii, was failing to regenerate. The proposed programme, the methods of putting in firebreaks and carrying out burns, and the first year's results, are described. Although during this first year of operation the scheme was only partially successful in excluding uncontrolled fires, valuable experience was gained regarding various aspects and problems associated with the operation of such a scheme.  相似文献   

2.
于德水  卢杰  江村扎西  王新靓  杨琳  田莹 《生态学报》2023,43(20):8578-8586
森林火灾在二十一世纪内的发生频率逐步升高。大量研究发现森林火灾与树木生长之间存在有紧密的相关性。因此探究森林火灾对于树木生长的影响,分析火灾的不同强度对于树木径向生长是否有着显著的差异,将对于评估森林保护指标有着重要的实际意义。实验基于树木年轮学的研究方法,探究西藏林芝市本日山及九五六两场森林火灾对高山松径向生长的影响,分析在火灾前后高山松径向生长与气温及降水之间的响应关系。基于林芝市比日山及九五六两个火烧区域,建立了受轻度火影响和受中度火影响的高山松样地。利用树木年代学的方法,对年轮宽度指数与1961-2020年气温及降水分别进行相关分析,同时结合火灾的发生时间,将时间序列划分为:1961-2006年火灾前和2007-2021年火灾后。结果显示, 轻度火影响的高山松径向生长对气温和降水敏感,特别是在3-8月最高气温上呈现出显著性的增加。中度火影响的高山松径向生长则显著降低。火灾干扰明显抑制了高山松的径向生长,特别是火因子在平均气温和最高气温的干扰上对其径向生长具有明显抑制作用。受到轻度火影响的高山松径向生长在短期内有较为明显的增加趋势,但长期并不显著;而中度火影响的树木径向生长则在短期内不明显下降,但长期显著。受到轻度火影响的高山松中,其径向生长与最低气温之间呈显著的负相关,且使得高山松对外界环境的响应更为敏感,而中度火影响的高山松则并未表现出这种显著的响应状态。因此对于在高海拔地区而言,森林火灾对于树木径向生长有着显著的干扰的同时也提升树木与外界环境的响应程度。  相似文献   

3.
The study aimed at determining the population status of the different Acacia tree species producing gum arabic in the undisturbed, grazed and cultivated habitats in the Karamoja region, Uganda. A total of 135 sample plots each measuring 20 × 20 m2 (0.04 ha) with each habitat having 45 plots were selected and established in the seven counties using a simple random sampling technique. The tree species present, their abundances and sizes were recorded. Twelve Acacia species were identified and a total of 5535 recorded in the sampled area. Out of these, five were gum‐producing acacias. Acacia senegal dominated the acacias in all the seven counties and in all habitats of Karamoja with Acacia nilotica (72.3%), Acacia seyal (13.4%), Acacia sieberiana (4%) and Acacia gerrardii (2.6%). Non‐gum‐producing acacias constituted 7.19% of the total abundance. The tree densities increased with increase in tree size in the undisturbed and grazed habitats but decreased in the cultivated habitat. Most Acacia trees were of large size, an indication of old age and poor regeneration that could affect their future population status. It is recommended that further investigations be carried out into the causes of poor regeneration of Acacia species.  相似文献   

4.
Question: What is the relative importance of low‐ and high‐severity fires in shaping forest structure across the range of Pinus ponderosa in northern Colorado? Location: Colorado Front Range, USA. Methods: To assess severities of historic fires, 24 sites were sampled across an elevation range of 1800 to 2800 m for fire scars, tree establishment dates, tree mortality, and changes in tree‐ring growth. Results: Below 1950 m, the high number of fire scars, scarcity of large post‐fire cohorts, and lack of synchronous tree mortality or growth releases, indicate that historic fires were of low severity. In contrast, above 2200 m, fire severity was greater but frequency of widespread fires was substantially less. At 18 sites above 1950 m, 34 to 80% of the live trees date from establishment associated with the last moderate‐ to high‐severity fire. In these 18 sites, only 2 to 52% of the living trees pre‐date these fires suggesting that fire severities prior to any effects of fire suppression were sufficient to kill many trees. Conclusions: These findings for the P. ponderosa zone above ca. 2200 m (i.e. most of the zone) contradict the widespread perception that fire exclusion, at least at the stand scale of tens to hundreds of hectares, has resulted in unnaturally high stand densities or in an atypical abundance of shade‐tolerant species. At relatively mesic sites (e.g. higher elevation, north‐facing), the historic fire regime consisted of a variable‐severity regime, but forest structure was shaped primarily by severe fires rather than by surface fires.  相似文献   

5.
Fire is the prevalent disturbance in the Araucaria–Nothofagus forested landscape in south‐central Chile. Although both surface and stand‐replacing fires are known to characterize these ecosystems, the variability of fire severity in shaping forest structure has not previously been investigated in Araucaria–Nothofagus forests. Age structures of 16 stands, in which the ages of approximately 650 trees were determined, indicate that variability in fire severity and frequency is key to explaining the mosaic of forest patches across the Araucaria–Nothofagus landscape. High levels of tree mortality in moderate‐ to high‐severity fires followed by new establishment of Nothofagus pumilio typically result in stands characterized by one or two cohorts of this species. Large Araucaria trees are highly resistant to fire, and this species typically survives moderate‐ to high‐severity fires either as dispersed individuals or as small groups of multi‐aged trees. Small post‐fire cohorts of Araucaria may establish, depending on seed availability and the effects of subsequent fires. Araucaria's great longevity (often >700 years) and resistance to fire allow some individuals to survive fires that kill and then trigger new Nothofagus cohorts. Even in relatively mesic habitats, where fires are less frequent, the oldest Araucaria–Nothofagus pumilio stands originated after high‐severity fires. Overall, stand development patterns of subalpine AraucariaN. pumilio forests are largely controlled by moderate‐ to high‐severity fires, and therefore tree regeneration dynamics is strongly dominated by a catastrophic regeneration mode.  相似文献   

6.
7.
  • 1 Wood‐boring larvae in the families Cerambycidae and Buprestidae are often found in high densities in burned trees after wildland fires. They play an important role in tree decomposition, often reducing the value of salvageable timber, and represent an important avian food source.
  • 2 Three forest areas that experienced wildfires 1–3 years previously were surveyed during the summer of 2004. Ponderosa pine trees with green, scorched and consumed needles were examined for wood borer occurrence. Within each of the three needle damage categories, the mean wood borer incidence was similar between different age fires. Trees with scorched or consumed needles had significantly more wood borers than trees with green needles.
  • 3 Larvae collected from under tree bark were identified to family; when possible, cerambycids were identified further to Acanthocinus spp., Monochamus sp., Rhagium inquisitor (L.) and Stictoleptura canadensis (LeConte), and buprestids were identified to Chalcophora spp. and Chrysobothris sp.
  • 4 Classification tree models showed that the estimated probability of tree infestation by wood borers varied among needle damage categories. For trees with green needles, tree injury variables of high bole char height and phloem discolouration were important predictive variables. In trees where needles were consumed, tree size variables of diameter at breast height and tree height were important predictive variables.
  • 5 More than half the dead trees examined were infested with wood borers, indicating that infestation of fire‐killed ponderosa pine may represent an important food source for species such as woodpeckers and a potential problem for the utilization of infested trees.
  相似文献   

8.
Questions: Did fire regimes in old‐growth Pinus ponderosa forest change with Euro‐American settlement compared to the pre‐settlement period? Do tree age structures exhibit a pattern of continuous regeneration or is regeneration episodic and related to fire disturbance or fire‐free periods? Are the forests compositionally stable? Do trees have a clumped spatial pattern and are clumps even‐ or mixed‐age? How might information from this old‐growth forest inform current restoration and management practices? Location: A 235‐ha old‐growth forest in the Ishi Wilderness, southern Cascade Mountains, California. Methods: Age, size, and spatial pattern of trees were quantified in seven stands. Fire history was reconstructed using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing fire history with age, size, and spatial structure of trees and identifying and measuring trees killed by two recent fires. Results: Species composition in plots was similar but density and basal area of tree populations varied. Age structure for P. ponderosa and Quercus kelloggii showed periods of episodic recruitment that varied among plots. Fire disturbance was frequent before 1905, with a median period between fires of 12 years. Fire frequency declined after 1905 but two recent fires (1990, 1994) killed 36% and 41% of mostly smaller diameter P. ponderosa and Q. kelloggii. Clusters of similar age trees occurred at scales of 28‐1018 m2 but patches were not even‐aged. Interactions between tree regeneration and fire promoted development of uneven age groups of trees. Conclusions: Fire disturbance strongly influenced density, basal area, and spatial structure of tree populations. Fire exclusion over the last 100 years has caused compositional and structural changes. Two recent fires, however, thinned stands and created gaps favorable for Q. kelloggii and P. ponderosa regeneration. The effects of infrequent 20th century fire indicate that a low fire frequency can restore and sustain structural characteristics resembling those of the pre‐fire suppression period forest.  相似文献   

9.
Kennedy  A.D.  Potgieter  A.L.F. 《Plant Ecology》2003,167(2):179-192
Wildfires may be started naturally by lightning or artificially by humans. In the savanna regions of southern Africa, lightning fires tend to occur at the start of the wet season, during October and November, while anthropogenic fires are usually started during the dry season, between July and August. A long-term field manipulation experiment initiated in the Kruger National Park in 1952 was used to explore whether this seasonal divergence affects tree abundance, spatial pattern, size and architecture. After 44 years of prescribed burning treatments that simulated the seasonal incidence of lightning and anthropogenic fires, mean densities of the locally-dominant shrub, Colophospermum mopane, were 638 and 500 trees ha–1 respectively. Trees in burnt plots had aggregated distributions while trees in unburnt plots had random distributions. Significant differences (p < 0.001) were recorded in a range of morphological parameters including tree height, canopy diameter, mean stem circumference and number of stems. The incidence of resprouting also differed significantly between treatments, with burnt trees containing a high proportion of coppiced stems. The differences in tree size and architecture between the mid-dry season and early-wet season burning plots suggest that anthropogenic fires applied during July and August cannot substitute for a natural lightning fire regime. Anthropogenic fire yields a landscape that is shorter, more scrubby and populated by numerous coppiced shrubs than the landscape generated by natural lightning fire conditions.  相似文献   

10.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

11.
Large‐scale wildfires are expected to accelerate forest dieback in Amazônia, but the fire vulnerability of tree species remains uncertain, in part due to the lack of studies relating fire‐induced mortality to both fire behavior and plant traits. To address this gap, we established two sets of experiments in southern Amazonia. First, we tested which bark traits best predict heat transfer rates (R) through bark during experimental bole heating. Second, using data from a large‐scale fire experiment, we tested the effects of tree wood density (WD), size, and estimated R (inverse of cambium insulation) on tree mortality after one to five fires. In the first experiment, bark thickness explained 82% of the variance in R, while the presence of water in the bark reduced the difference in temperature between the heat source and the vascular cambium, perhaps because of high latent heat of vaporization. This novel finding provides an important insight for improving mechanistic models of fire‐induced cambium damage from tropical to temperate regions. In the second experiment, tree mortality increased with increasing fire intensity (i.e. as indicated by bark char height on tree boles), which was higher along the forest edge, during the 2007 drought, and when the fire return interval was 3 years instead of one. Contrary to other tropical studies, the relationship between mortality and fire intensity was strongest in the year following the fires, but continued for 3 years afterwards. Tree mortality was low (≤20%) for thick‐barked individuals (≥18 mm) subjected to medium‐intensity fires, and significantly decreased as a function of increasing tree diameter, height and wood density. Hence, fire‐induced tree mortality was influenced not only by cambium insulation but also by other traits that reduce the indirect effects of fire. These results can be used to improve assessments of fire vulnerability of tropical forests.  相似文献   

12.
A taxonomic study of the genus Padina from Japan, Southeast Asia, and Hawaii based on morphology and gene sequence data (rbcL and cox3) resulted in the recognition of four new species, that is, Padina macrophylla and Padina ishigakiensis from Ryukyu Islands, Japan; Padina maroensis from Hawaii; and Padina usoehtunii from Myanmar and Thailand. All species are bistratose and morphologically different from one another as well as from any known taxa by a combination of characters relating to degree of calcification; the structure, position, and arrangement of hairlines (HLs) and reproductive sori; and the presence or absence of rhizoid‐like groups of hairs and an indusium. Molecular phylogenetic analyses demonstrated a close relationship between P. ishigakiensis, P. macrophylla, P. maroensis, and Padina australis Hauck. The position of P. usoehtunii, however, was not fully resolved, being either sister to a clade comprising the other three new species and P. australis in the rbcL tree or more closely related to a clade comprising several other recently described species in the cox3 tree. The finding of the four new species demonstrates high species diversity particularly in southern Japan. The following characters were first recognized here to be useful for species delimitation: the presence or absence of small rhizoid‐like groups of hairs on the thallus surface, structure and arrangement of HLs on both surfaces either alternate or irregular, and arrangement of the alternating HLs between both surfaces in equal or unequal distance. The evolutionary trajectory of these and six other morphological characters used in species delineation was traced on the phylogenetic tree.  相似文献   

13.
大兴安岭塔河地区雷击火发生驱动因子综合分析   总被引:1,自引:1,他引:0  
森林火灾是一个全球性问题,对森林资源和温室气体排放有重要影响,并严重影响人们生命财产安全。林火主要分为人为火(人为活动引起)和雷击火(雷电引起)两大类。在我国北方针叶林带,雷击火主要集中在黑龙江大兴安岭和内蒙古呼伦贝尔盟地区。大兴安岭塔河地区位于我国北方针叶林带,是森林火灾的重灾区。其中雷击火所占比例大约1/3以上。目前针对当地雷击火与影响因子的研究主要集中于气象因子,非气象因子(森林可燃物和地形特征)的研究受数据条件和技术手段限制研究报道较少。研究数据包含三部分,林火数据,气象数据和地理植被数据。林火数据包含1974—2009年间林火发生经纬度坐标,时间和面积等。气象数据主要包括每日尺度的最低气温,最高气温,平均风速,平均相对湿度等因子。根据加拿大火险天气指标系统计算出了出了细小可燃物湿度码(FFMC),干燥可燃物湿度码(DMC)和干旱码(DC)也没用于本研究。此外,基于1∶10万塔河地区数字化林相图提取了海拔、坡度、坡向、森林类型、优势树种、龄级等因子用于决策因子分析。研究数据分析过程主要应用Arc GIS10.0中的空间分析工具和SPSS19.0的逻辑斯蒂回归模型完成。研究结果显示"日最低气温","最大风速"和"最小相对湿度"3个气象因子及火险天气指标系统(FWI)中细小可燃物湿度码(FFMC)干旱码(DC)与雷击火发生概率显著相关(P0.05),模型整体拟合水平R2(CoxSnell)=0.326。在非气象因子与雷击火发生的逻辑斯蒂模型检验中,"地被物盖度"和"龄级"均在P=0.05水平上与雷击火发生显著相关,其模型的整体拟合水平R2(CoxSnell)为0.15。研究结论表明在分析雷击火发生的决策因子时,应该综合考虑气象、可燃物和林分因素。  相似文献   

14.
Appropriate fire management strategies are needed to protect forests and large old ecologically and culturally significant trees in natural landscapes. The aim of this study was to determine the age of large old and relic trees of cultural significance that included Cypress Pine (Callitris columellaris F. Muell.), a species that is sensitive to crown scorching fires in a fire‐prone landscape, and to calibrate a tree‐growth‐rate method for estimating tree age. Twelve large trees were dated using radiocarbon (14C) dating. The trees are located on North Stradbroke Island (Indigenous name: Minjerribah), southeast Queensland (Australia) in a fire‐prone landscape where recent wildfires have destroyed many large trees. The median tree ages ranged from 155 to 369 years. These results suggest an important role of past Indigenous land management practices in protecting Cypress Pine from crown scorching fires. The tree‐growth‐rate‐based method for estimating tree age generally overestimated the age derived from radiocarbon dating. Bias correction factors were developed for correcting various measures of periodic growth rates. This study provides evidence that appropriate low‐intensity fire strategies have the potential to contribute to the survival of forests and conserve large old trees.  相似文献   

15.
The objective of this study was to characterize the effects of soil burn severity and initial tree composition on long-term forest floor dynamics and ecosystem biomass partitioning within the Picea mariana [Mill.] BSP-feathermoss bioclimatic domain of northwestern Quebec. Changes in forest floor organic matter and ecosystem biomass partitioning were evaluated along a 2,355-year chronosequence of extant stands. Dendroecological and paleoecological methods were used to determine the time since the last fire, the soil burn severity of the last fire (high vs. low severity), and the post-fire tree composition of each stand (P. mariana vs. Pinus banksiana Lamb). In this paper, soil burn severity refers to the thickness of the organic matter layer accumulated above the mineral soil that was not burned by the last fire. In stands originating from high severity fires, the post-fire dominance by Pinus banksiana or P. mariana had little effect on the change in forest floor thickness and tree biomass. In contrast, stands established after low severity fires accumulated during the first century after fire 73% thicker forest floors and produced 50% less tree biomass than stands established after high severity fires. Standing tree biomass increased until approximately 100 years after high severity fires, and then decreased at a logarithmic rate in the millennial absence of fire. Forest floor thickness also showed a rapid initial accumulation rate, and continued to increase in the millennial absence of fire at a much slower rate. However, because forest floor density increased through time, the overall rate of increase in forest floor biomass (58 g m−2 y−1) remained constant for numerous centuries after fire (700 years). Although young stands (< 200 years) have more than 60% of ecosystem biomass locked-up in living biomass, older stands (> 200 years) sequester the majority (> 80%) of it in their forest floor. The results from this study illustrate that, under similar edaphic conditions, a single gradient related to time since disturbance is insufficient to account for the full spectrum of ecosystem biomass dynamics occurring in eastern boreal forests and highlights the importance of considering soil burn severity. Although fire severity induces diverging ecosystem biomass dynamics in the short term, the extended absence of fire brings about a convergence in terms of ecosystem biomass accumulation and partitioning.  相似文献   

16.
Acacia gerrardii is the only native tree species of the Kuwaiti desert ecosystem. However, anthropogenic disturbances and harsh arid climate have contributed towards the disappearance of this keystone species from its habitat. In this study, effects of different seed pretreatments to break dormancy, water entry pathway, and ecology (seasonal timing) of dormancy loss and germination of A. gerrardii were investigated. Effects of mechanical scarification, hot water treatment (30 s, 1, 2, and 5 min), and concentrated acid scarification (10, 20, and 30 min) on germination percentage and rate (time to 50% germination and final germination) were also examined. Pretreatment with mechanical scarification produced the highest germination in the least time and 20 °C, 40% RH with 12 h of light (2370 Lux) were found to provide the best germination environment. Seeds were rapidly aged at 60% RH and 45 or 50 °C to determine longevity, and the results were analyzed using probit analysis. Times taken for viability of A. gerrardii seeds aged at 45 and 50 °C to fall to 50% (p50) were 38.6 and 9.3 days, respectively, and therefore the seeds can be considered to have medium longevity. Experiments to find the water entry pathway in A. gerrardii indicated that the micropyle region was the primary point of water entry into the seed. Seed burial experiments indicated that though seed retention decreased over time, there was no significant decrease in number of viable seeds after 31 weeks. The findings of this study are important to nursery managers, seed banks, and those involved in conservation and restoration activities.  相似文献   

17.
Aim To assess the importance of drought and teleconnections from the tropical and north Pacific Ocean on historical fire regimes and vegetation dynamics in north‐eastern California. Location The 700 km2 study area was on the leeward slope of the southern Cascade Mountains in north‐eastern California. Open forests of ponderosa pine (Pinus ponderosa var. ponderosa Laws.) and Jeffrey pine (P. jeffreyi Grev. & Balf) surround a network of grass and shrub‐dominated meadows that range in elevation from 1650 to 1750 m. Methods Fire regime characteristics (return interval, season and extent) were determined from crossdated fire scars and were compared with tree‐ring based reconstructions of precipitation and temperature and teleconnections for the period 1700–1849. The effect of drought on fire regimes was determined using a tree‐ring based proxy of climate from five published chronologies. The number of forest‐meadow units that burned was compared with published reconstructions of the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Results Landscape scale fires burned every 7–49 years in meadow‐edge forests and were influenced by variation in drought, the PDO and ENSO. These widespread fires burned during years that were dryer and warmer than normal that followed wetter and cooler years. Less widespread fires were not associated with this wet, then dry climate pattern. Widespread fires occurred during El Niño years, but fire extent was mediated by the phase of the PDO. Fires were most widespread when the PDO was in a warm or normal phase. Fire return intervals, season and extent varied at decadal to multi‐decadal time scales. In particular, an anomalously cool, wet period during the early 1800s resulted in widespread fires that occurred earlier in the year than fires before or after. Main conclusions Fire regimes in north‐eastern California were strongly influenced by regional and hemispheric‐scale climate variation. Fire regimes responded to variation that occurred in both the north and tropical Pacific. Near normal modes of the PDO may influence fire regimes more than extreme conditions. The prevalence of widespread teleconnection‐driven fires in the historic record suggests that variation in the Pacific Ocean was a key regulator of fire regimes through its influence on local fuel production and successional dynamics in north‐eastern California.  相似文献   

18.
Question: What are the effects of fire season and intensity on resprouting of different root‐crown bearing shrub species in second‐growth Pinus palustris (longleaf pine) savannas? Location: northern Florida and eastern Louisiana, USA. Methods: In Florida, quadrats were burned biennially either during the dormant season or the growing season. In Louisiana, we applied intensity treatments to quadrats by manipulating ground‐cover fuels, just prior to biennial growing season fires. Maximum fire temperatures were measured, and stem densities were censused before and after fires in both regions. Results: After dormant season fires in Florida, stem densities were seven times greater than initial levels for Hypericum spp. In contrast, growing season fires reduced densities of H. brachyphyllum by 65%, but did not change densities of H. microsepalum. Only resprouting of H. microsepalum decreased with increased fire intensity. In Louisiana, fire intensity influenced Ilex vomitoria, but not Quercus spp. Following fires, stem densities oil. vomitoria were five times greater in fuel removal than fuel addition areas. Conclusions: Past use of dormant season fires likely contributed to increased abundances of some species of root‐crown bearing shrubs observed today in old‐growth savannas. Reintroduction of growing season fires will be effective in maintaining or decreasing stem densities, depending on species and fuel type. Genet mortality and stem density reductions appear most likely in areas at localized scales where tree falls and needle coverage create hotspots in Pinus palustris savannas.  相似文献   

19.
20.
Abstract. We reconstructed forest development and disturbance events (fire and logging) during the last 1000 yr with tree‐ring data, pollen and charcoal analysis from a semi‐natural Fagus sylvatica‐Picea abies forest (ca. 1 km2) in the hemiboreal zone. According to pollen analysis, Quercus robur together with Pinus sylvestris was abundant in the forest until the turn of the 18th/19th centuries when these species disappeared completely (Quercus) or nearly completely (Pinus) and were replaced by Fagus and Picea. The disappearance of Quercus was corroborated by the remarkable discovery of a single Quercus stump that had been cut in the 18th century and had become overgrown and preserved by a very old Picea. In total 11 fires were dated from 1555 to 1748 from fire scars in several Pinus stumps cut 100 ‐ 200 yr ago. Since the last fire in 1748, no Quercus or Pinus have regenerated in the core of the reserve apart from single pines in neighbouring managed forest (80 yr ago). During the period of documented fires Fagus was protected from fires in a refuge made up of large boulders. Picea colonized the region at the time when the fires ceased 250 yr ago. We hypothesize that most of the fires were probably of human origin because of their patchiness and high frequency compared to the natural background levels of lightning ignitions in the region. On a 300‐yr time scale, logging and fire suppression seem to strongly overshadow the effect of climate change on forest composition and dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号