首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
小麦——黑麦染色体易位系的细胞学鉴定   总被引:1,自引:0,他引:1  
赵燕丽 《生物技术》2002,12(4):15-16
用C-带技术分析了普通小麦“中国春”、黑麦“胜利”及小黑麦与普通小麦经辐射处理的后代中产生的并经多代纯化的5个带有黑麦某些性状的普通小麦品系的根尖染色体,结果表明:品系98-5-1为1A/1R纯合易位系,具有抗锈病、抗白粉病等基因,可作为诱导小片段易位的资源。作者提出在小麦-黑麦易位系鉴定中应用更高分辩率的G-带技术识别黑麦染色体片段或小片段易位。  相似文献   

2.
构建人工合成六倍体小麦是利用小麦近缘材料优异基因的很有效的方法。但是目前在人工合成异源六倍小麦的过程中对微卫星位点的影响研究尚不完善。本研究直接比较了亲本四倍体小麦PS5与4个不同粗山羊草进行远缘杂交并经染色体自然加倍后获得4个人工合成六倍体小麦前后,位于普通小麦A/B染色体组不同染色体臂上的104对引物的变化。结果表明,104对微卫星引物的扩增产物在4个合成六倍体小麦中具有与普通小麦相同的带型;但在22对引物的扩增产物上存在差异,其中Am4与其它3个六倍体小麦Am1,Am2,Am3在15对引物扩增的条带存在差异;另外发现有45对特异与AB染色体的引物能够在粗山羊草中扩增出产物,其中特异于B染色体组的引物47.54%的可以在粗山羊草中扩增出产物,而A染色体组的引物占38.24%。因此,基于普通小麦开发的微卫星引物可以用于合成六倍体小麦的研究,而Am4材料与其它3个合成二倍体小麦的差异尚需进一步研究,另外我们推测普通小麦的B染色体组与A染色体组相比与粗山羊草存在较近的亲缘关系。  相似文献   

3.
三个家猪品种和rob易位群染色体分带多态性的比较   总被引:4,自引:1,他引:3  
对家猪不同品种及家系间的染色体组型、C-带、Ag-NORs多态性进行的研究表明:杜洛克猪、约克夏猪、长白猪体细胞染色体数2n=38,核型2n=10sm+12m+4st+12t,而13/17易位纳合子猪(36,rob.13/17)的体细胞染色体数2n=36,核型2n=10sm+12m+6st+8t;13/17易位杂合子猪(37,rob.13/17)的体细胞染色体数目为2n=37,核型为2n=10sm+12m+5st+10t。5种家猪的C-带在13~18号染色体上存在大、中、小三种类型,且呈多态性分布。杜洛克猪、约克夏猪、长白猪、13/17易位纳合子猪、13/17易位杂合子猪的Ag-NORs均数分别为2.05、2.062.00、1.99、1.98,说明Ag-NORs在品种、个体及细胞间具有多态性.  相似文献   

4.
普通小麦与黑麦的杂交亲和性主要由位于小麦染色体SBL、SAL、SD、IA上的Kr;、Kr;、Kr。、Kr。控制”-’‘,Kr基因同时也控制着普通小麦与其它外源种属的杂交亲和性’‘·”。源于中国的小麦地方品种普遍具有较好的亲和性“·“,但由于其农艺性状差,配合力不理想,在远缘杂交育种中收效甚微。山东是全国产麦大省,小麦品种历经5次更新、更换,目前推广的品种综合性状优良,但对其杂交亲和性尚未见报道。因此研究山东主要推广小麦品种的亲和性,筛选综合性状优良的高亲和小麦材料,对于小麦品种改良和有效地开展远缘杂文具有重要…  相似文献   

5.
小麦族披碱草属、鹅观草属和猬草属模式种的C带研究   总被引:12,自引:0,他引:12  
采用改良的Giemsa C带技术,分析了小麦族披碱草属、鹅观草属和猬草属模式种的染色体C带带型。Elymus sibiricus、Roegneria caucasica和Hysrix patula的染色体在Giemsa C带带型上存在明显的差异,显示了这3个属模式种的物种特异性。3个模式种的Giemsa C带核型表明,C带带纹主要分布在染色体的末端和着丝粒附近,而中间带相对较少。对E.sibiricus、R.caucasica和H.patula的St、H、Y染色体组C带带型与其它物种的St、H、Y染色体组C带带型的差异进行了讨论。  相似文献   

6.
节节麦5D染色体上随体多态性的一个证据   总被引:1,自引:0,他引:1  
5D染色体是节节麦整个染色体组中唯一的1对随体染色体, 其随体位于5D短臂的末端。对来源于中国的9个不同的节节麦居群的吉姆萨C带分析表明: 同一份节节麦居群内不同植株或不同细胞,这个端部随体在整个有丝分裂前期、中期和间期都很稳定,表现为大小、强弱一致的端部特征带。但是不同节节麦居群间5D染色体上的这个随体C带存在多态性。5D染色体上的随体区域可以作为小麦遗传分析和遗传操作的标记性状。同时本文还对这种多态性与普通小麦 5D染色体短臂上随体的消失的关系作了分析。 Abstract:C-banding analysis of satellites in 9 accessions of Ae.tauschii native to China was carried out with C-banded miotic interphases,prophases and metaphases,The results showed that the c-banded heterochromatin of satellites of Ae.tauschii did not change in size during the whole miotic stage and novariaton was observed among plants and cells within a accession,while polymorphism in c-banded satellites between different accessions was found.The C-banded heterochromatin of satellites of Ae.tauschii can be used as a marker in genetic research and genetic research and genetic manipulation.Further discussion is made on the relation between the polymorphism and the satellie loss in common wheat.  相似文献   

7.
抗条锈病小麦—中间偃麦草异附加系的生化与分子标记   总被引:12,自引:2,他引:10  
对小麦-中间偃麦草部分双二倍体无芒中4、异附加系C076、宛7107和中国春进行了肽链内切酶(EP-1)等电聚焦电泳。结果表明,肽链内切酶在阳极处有一特异带。肽链内切酶已定位于小麦第7部分同源群,故附加的染色体为第7部分同源群的2条染色体,对中间偃麦草,无芒中4、C076和宛7107进行了RAPD分析。获得了可用于检测C076中外源染色体的3个RAPD标记,即OPI05-800、OPI10-600、OPK01-900。  相似文献   

8.
费炎灵  童一中 《遗传》1990,12(3):13-16
“蟹脚芒”小麦是从八倍体小偃麦中-5,与普通小麦晋革早杂交后代中选育出来的新品种。“蟹脚芒”小麦的芒性“蟹脚芒”是一种新发现的芒性性状。本文对“蟹脚芒”小麦的芒性性状作了详细记载,并运用中国春单体系统[10]对“蟹脚芒”性状进行染色体定位研究。  相似文献   

9.
利用限制性片段长度多态性(RFLP)及等电聚焦(IEF)技术确定普通小麦中国春-二倍体长穗僵麦草7个异附加系所附加的外源染色体与小麦染色体的部分同源性,共有8个生化标记,13个RFLP标记在亲本间揭示了多态性。结果表明:长穗堰麦草的IE、2E、3E、4E、 5E、6E、7E 7条染色体分别与小麦染色体的 1、2、3、4、5、6、7 7个部分同源群具有部分同源关系,堰麦草的IE与7E、5E与7E染色体间可能发生过重排。同时,研究还分别将Est-E5、Est-E8位点定位于3EL,Per-E1定位于7E, Per-E4定位于5E,β-Amy-E1定位于4EL染色体,并进一步将α-Amy-E1位点定位于6E染色体长臂上。  相似文献   

10.
为分析普通小麦-天兰冰草部分双二倍体-远中2号的染色体构成,用生物素标记天兰冰草染色体组DNA俄为探针,,以普通小麦品种中国春染色体组DNA为封闭DNA,与远中2号的有丝分裂中期染色体DNA进行了分子原位杂是明远中2号除具有普通小麦的21对染色体外,附加了1对小麦-地冰草易位染色体(妈卫兰冰草染色体片段易位到小麦染色体的两臂端部),5对天兰冰草染色体。说明小麦-天兰冰草部分双二倍体在形成过程中当构  相似文献   

11.
Restriction fragment length polymorphism (RFLP) maps of chromosomes 6A, 6B, and 6D of hexaploid wheat (Triticum aestivum L. em. Thell.) have been produced. They were constructed using a population of F7-8 recombinant inbred lines derived from a synthetic wheat x bread wheat cross. The maps consist of 74 markers assigned to map positions at a LOD >= 3 (29 markers assigned to 6A, 24 to 6B, and 21 to 6D) and 2 markers assigned to 6D ordered at a LOD of 2.7. Another 78 markers were assigned to intervals on the maps. The maps of 6A, 6B, and 6D span 178, 132, and 206 cM, respectively. Twenty-one clones detected orthologous loci in two homoeologues and 3 detected an orthologous locus in each chromosome. Orthologous loci are located at intervals of from 1.5 to 26 cM throughout 70% of the length of the linkage maps. Within this portion of the maps, colinearity (homosequentiality) among the three homoeologues is strongly indicated. The remainder of the linkage maps consists of three segments ranging in length from 47 to 60 cM. Colinearity among these chromosomes and other Triticeae homoeologous group 6 chromosomes is indicated and a consensus RFLP map derived from maps of the homoeologous group 6 chromosomes of hexaploid wheat, tetraploid wheat, Triticum tauschii, and barley is presented. Key words : RFLP, wheat, linkage maps, molecular markers.  相似文献   

12.
A genetic linkage map of durum wheat   总被引:20,自引:6,他引:14  
 A genetic linkage map of tetraploid wheat [Triticum turgidum (L.) Thell.] was constructed using segregation data from a population of 65 recombinant inbred lines (RILs) derived from a cross between the durum wheat cultivar Messapia and accession MG4343 of T. turgidum (L.) Thell. ssp dicoccoides (Korn.) Thell. A total of 259 loci were analysed, including 244 restriction fragment length polymorphisms (RFLPs), one PCR (polymerase chain reaction) marker (a sequence coding for a LMW (low-molecular-weight) glutenin subunit gene located at the Glu-B3 locus), seven biochemical (six seed-storage protein loci and one isozyme locus) and seven morphological markers. A total of 213 loci were mapped at a LOD≥3 on all 14 chromosomes of the A and B genomes. The total length of the map is 1352 cM and the average distance between adjacent markers is 6.3 cM. Forty six loci could not be mapped at a LOD≥3. A fraction (18.6%) of the markers deviated significantly from the expected Mendelian ratios; clusters of loci showing distorted segregation were found on chromosomes 1B, 3AL, 4AL, 6AL and 7AL. The durum wheat map was compared with the published maps of bread wheat using several common RFLP markers and general features are discussed. The markers detected the known structural rearrangements involving chromosomes 4A, 5A and 7B as well as the translocation between 2B-6B, but not the deletion on 2BS. This map provides a useful tool for analysing and breeding economically important quantitative traits and for marker-assisted selection, as well as for studies of genome organisation in small grain cereal species. Received: 5 January 1998 / Accepted: 31 March 1998  相似文献   

13.
Fluorescence in situ hybridization (FISH) is a useful tool for physical mapping of chromosomes and studying evolutionary chromosome rearrangements. Here we report a robust method for single-copy gene FISH for wheat. FISH probes were developed from cDNA of cytosolic acetyl-CoA carboxylase (ACCase) gene (Acc-2) and mapped on chromosomes of bread wheat, Triticum aestivum L. (2n?=?6x?=?42, AABBDD), and related diploid and tetraploid species. Another nine full-length (FL) cDNA FISH probes were mapped and used to identify chromosomes of wheat species. The Acc-2 probe was detected on the long arms of each of the homoeologous group 3 chromosomes (3A, 3B, and 3D), on 5DL and 4AL of bread wheat, and on homoeologous and nonhomoeologous chromosomes of other species. In the species tested, FISH detected more Acc-2 gene or pseudogene sites than previously found by PCR and Southern hybridization analyses and showed presence/absence polymorphism of Acc-2 sequences. FISH with the Acc-2 probe revealed the 4A–5A translocation, shared by several related diploid and polyploid species and inherited from an ancestral A-genome species, and the T. timopheevii-specific 4At–3At translocation.  相似文献   

14.
Triticum turgidum L var. durum is known to be particularly susceptible to infection by Fusarium graminearum, the causal agent for Fusarium head blight (FHB), which results in severe yield losses and grain contaminated with mycotoxins. This research was aimed at identifying FHB resistance in tetraploid wheat and mapping the location of FHB resistance genes. A tetraploid cross of durum wheat ('Strongfield') x Triticum carthlicum ('Blackbird') was used to generate a doubled-haploid (DH) population. This population was evaluated for type II resistance to F. graminearum in replicated greenhouse trials, in which heads were innoculated and the percent of infected spikelets was determined 21 days later. The population was also genotyped with microsatellite markers to construct a map of 424 loci, covering 2 052 cM. The FHB reaction and genotypic data were used to identify FHB resistance quantitative trait loci (QTLs). It was determined that 2 intervals on chromosomes 2BL and 6BS controlled FHB resistance in this tetraploid cross. The FHB resistance allele on chromosome 2BL (r2=0.26, logarithm of odds (LOD)=8.5) was derived from 'Strongfield', and the FHB resistance allele on chromosome 6BS (r2=0.23, LOD=6.6) was derived from 'Blackbird'. Two other loci, on chromosomes 5AS and 2AL, were shown to regulate FHB infection and to have an epistatic effect on the FHB resistance QTL on chromosome 6BS. Further, the FHB resistance QTL peak on chromosome 6BS was clearly coincident with the known FHB resistance gene Fhb2, derived from Sumai 3. The results show that FHB resistance can be expressed in durum wheat, and that T. carthlicum and Triticum aestivum likely share a common FHB resistance gene on chromosome 6BS.  相似文献   

15.
筛选利用小麦微卫星标记追踪簇毛麦各条染色体   总被引:11,自引:0,他引:11  
张伟  高安礼  周波  陈佩度 《遗传学报》2006,33(3):236-243
选用定位于普通小麦7个部分同源群上的276对微卫星引物对普通小麦中同春和簇毛麦的基因组DNA进行扩增分析,有148对引物可在两个物种间检测到多态性。利用上述显示多态性的引物进一步对7个中国春-簇毛麦二体附加系进行扩增分析,筛选出分别可用来追踪簇毛麦1V至7V染色体的引物wmc49(1BS)、wmc25(2BS)、gdm36(3DS)、gdml45(4AL)、wmc233(5DS)、wmc256(6AL)和gwm344(7BL)。此外还发现6DS上的微卫星引物gwm469可以用来追踪簇毛麦的2V染色体;2DS上的微卫星引物gdm107可用来追踪簇毛麦的6V染色体。进一步用涉及不同簇毛麦和小麦背景的小麦一簇毛麦染色体附加系、代换系和易位系进行扩增分析,这些微卫星标记也可用来鉴定簇毛麦的各条染色体。因此,这然簇毛麦染色体特异的微卫星标记可用来追踪普通小麦背景中的簇毛麦染色体。  相似文献   

16.

Key message

Genome-wide association mapping in conjunction with population sequencing map and Ensembl plants was used to identify markers/candidate genes linked to leaf rust, stripe rust and tan spot resistance in wheat.

Abstract

Leaf rust (LR), stripe rust (YR) and tan spot (TS) are some of the important foliar diseases in wheat (Triticum aestivum L.). To identify candidate resistance genes for these diseases in CIMMYT’s (International Maize and Wheat Improvement Center) International bread wheat screening nurseries, we used genome-wide association studies (GWAS) in conjunction with information from the population sequencing map and Ensembl plants. Wheat entries were genotyped using genotyping-by-sequencing and phenotyped in replicated trials. Using a mixed linear model, we observed that seedling resistance to LR was associated with 12 markers on chromosomes 1DS, 2AS, 2BL, 3B, 4AL, 6AS and 6AL, and seedling resistance to TS was associated with 14 markers on chromosomes 1AS, 2AL, 2BL, 3AS, 3AL, 3B, 6AS and 6AL. Seedling and adult plant resistance (APR) to YR were associated with several markers at the distal end of chromosome 2AS. In addition, YR APR was also associated with markers on chromosomes 2DL, 3B and 7DS. The potential candidate genes for these diseases included several resistance genes, receptor-like serine/threonine-protein kinases and defense-related enzymes. However, extensive LD in wheat that decays at about 5?×?107 bps, poses a huge challenge for delineating candidate gene intervals and candidates should be further mapped, functionally characterized and validated. We also explored a segment on chromosome 2AS associated with multiple disease resistance and identified seventeen disease resistance linked genes. We conclude that identifying candidate genes linked to significant markers in GWAS is feasible in wheat, thus creating opportunities for accelerating molecular breeding.
  相似文献   

17.
小麦硫代硫酸硫转移酶类似基因的克隆与定位   总被引:8,自引:2,他引:6  
小麦-簇毛麦6VS/6AL易位系92R137含有抗白粉病基因Pm21。为了研究该易位系的抗病机理,应用mRNA差异显示和快速扩增cDNA未端(Rapid Amplification of cDNAEnd,RACE)技术对在白粉菌诱导后表达增强的基因进行了克隆,分离到1个命名为TaTST的全长cDNA序列。Northern杂交分析表明,TaTST基因在白粉菌诱导后表达明显增强,24h达到峰值,氨基酸序列同源性分析表明,TaTST与Datisca glomerata的硫代硫酸硫转移酶基因(rho-danese,EC,2.8.1.1)序列有64%相同,80%相似,用中国春缺体/四体系和端体系Southern杂交和基因特异性引物扩增(gene specific primer-PCR)将TaTST基因定位在小麦6B染色体短臂上,Southern杂交表明,该基因为单拷贝基因,由于在杨麦5号和6VS/6AL易位系间存在明显多态,可以推测在6VS上有TaTST的同源基因,TaTST是从小麦中分离的新基因。白粉菌诱导后的表达变化提示;TaTST与小麦抗白粉病反应有关。  相似文献   

18.
Based on the cross (Triticum aestivum L. x Secale cereale L.) x T. aestivum L., wheat-rye substitution lines (2n = 42) were produced with karyotypes containing, instead of a pair of homologous wheat chromosomes, a homeologous pair of rye chromosomes. The chromosome composition of these lines was described by GISH and C-banding methods, and SSR analysis. The results of genomic in situ hybridization demonstrated that karyotype of these lines included one pair of rye chromosomes each and lacked wheat--rye translocations. C-banding and SSR markers were used to identify rye chromosomes and determine the wheat chromosomes at which the substitution occurred. The lines were designated 1R(1D), 2R(2D)2, 2R(2D)3, 3R(3B), 6R(6A)2. The chromosome composition of lines IR(1A), 2R(W)1, 5R(W), 5R(5A), and 6R(W)1, which were earlier obtained according to the same scheme for crossing, was characterized using methods of telocentric analysis, GISH, C-banding, and SSR analysis. These lines were identified as 1R(1A), 2R(2D)1, 5R(5D), 5R(5A), and 6R(6A)1, C-banding of chromosomes belonging to line 1R(1A) revealed the presence of two translocated chromosomes (3DS.3DL-del. and 4AL.W) during simultaneous amplification of SSR markers located on 3DL and 4AS arms. The "combined" long arm of the newly derived chromosome 4A is assumed to be formed from the long arm of chromosome 4AS itself and a deleted segment 3DL. All examined lines are cytologically stable, except for 3R(3B), which does not affect the stability of rye 3R chromosome transfer. Chromosome identification and classification of the lines will permit them to be models for genetic studies that can be used thereafter as promising "secondary gene pools" for the purpose of plant breeding.  相似文献   

19.
Lili Qi  Bend Friebe  Bikram S Gill 《Génome》2006,49(12):1628-1639
Most pericentromeric regions of eukaryotic chromosomes are heterochromatic and are the most rapidly evolving regions of complex genomes. The closely related genomes within hexaploid wheat (Triticum aestivum L., 2n=6x=42, AABBDD), as well as in the related Triticeae taxa, share large conserved chromosome segments and provide a good model for the study of the evolution of pericentromeric regions. Here we report on the comparative analysis of pericentric inversions in the Triticeae, including Triticum aestivum, Aegilops speltoides, Ae. longissima, Ae. searsii, Hordeum vulgare, Secale cereale, and Agropyron elongatum. Previously, 4 pericentric inversions were identified in the hexaploid wheat cultivar 'Chinese Spring' ('CS') involving chromosomes 2B, 4A, 4B, and 5A. In the present study, 2 additional pericentric inversions were detected in chromosomes 3B and 6B of 'CS' wheat. Only the 3B inversion pre-existed in chromosome 3S, 3Sl, and 3Ss of Aegilops species of the Sitopsis section, the remaining inversions occurring after wheat polyploidization. The translocation T2BS/6BS previously reported in 'CS' was detected in the hexaploid variety 'Wichita' but not in other species of the Triticeae. It appears that the B genome is more prone to genome rearrangements than are the A and D genomes. Five different pericentric inversions were detected in rye chromosomes 3R and 4R, 4Sl of Ae. longissima, 4H of barley, and 6E of Ag. elongatum. This indicates that pericentric regions in the Triticeae, especially those of group 4 chromosomes, are undergoing rapid and recurrent rearrangements.  相似文献   

20.

Background

Chromosomal rearrangements induced by wheat-rye hybridization is a very well investigated research topic. However, the structural alterations of wheat chromosomes in wheat-rye hybrids are seldom reported.

Methodology/Principal Findings

Octoploid triticale lines were derived from common wheat Triticum. aestivum L. ‘Mianyang11’×rye Secale cereale L. ‘Kustro’. Some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ and common wheat T. aestivum L. ‘Chuannong27’ followed by self-fertilization. Fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) using Oligo-pSc119.2-1, Oligo-pTa535-1 and rye genomic DNA as probes were used to analyze the mitotic chromosomes of these progeny. Alterations of wheat chromosomes including 5A, 6A, 1B, 2B, 6B, 7B, 1D, 3D and 7D were observed. 5AL arm carrying intercalary Oligo-pSc119.2-1, Oligo-pTa535-1 or both Oligo-pSc119.2-1 and Oligo-pTa535-1 signals, 6AS, 1BS and 1DL arms containing terminal Oligo-pSc119.2-1 signal, 6BS and 3DS arms without terminal Oligo-pSc119.2-1 signal, 7BS without subtelomeric Oligo-pSc119.2-1 signal and 7DL with intercalary Oligo-pSc119.2-1 signal have been observed. However, these changed wheat chromosomes have not been detected in ‘Mianyang11’ and Chuannong 27. The altered 5A, 6A, 7B and 7D chromosomes in this study have not been reported and represent several new karyotype structures of common wheat chromosomes.

Conclusions/Significance

These rearranged wheat chromosomes in the present study afford some new genetic variations for wheat breeding program and are valuable materials for studying the biological function of tandem repetitive DNA sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号