首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An artificial neural network (ANN) model was developed for simulating water levels at the Sultan Marshes in Turkey. Sultan Marshes is a closed basin wetland located in the semi-arid Central Anatolia region of Turkey. It is one of the thirteen Ramsar sites of Turkey and a national park. Water levels at the Sultan Marshes showed strong fluctuations in recent decades due to the changes in climatic and hydrologic conditions. In this study, monthly average water levels were simulated using a multi-layer perceptron type ANN model. The model inputs consisted of climatic data (precipitation, air temperature, evapotranspiration) and hydrologic data (ground water levels, spring flow rates, and previous month water levels) available from 1993 to 2002. 70 % of the data were used for model training and remaining 30 % were used for model testing. Model training was accomplished by using a scaled conjugate gradient backpropagation algorithm. The performance of the model was evaluated by calculating the root mean square error (RMSE) and the coefficient of determination (R 2) between observed and simulated water levels. The sensitivity of the model to input parameters was determined by evaluating the model performance when a single input variable was excluded. It was found that the ANN model can successfully be used for simulating water levels at the Sultan Marshes. The model developed using all input variables provided the best results with two neurons in the hidden layer. The RMSE and R 2 of the simulated water levels were 4.0 cm and 96 %, respectively. The sensitivity analysis showed that the model was most sensitive to previous month water levels and ground water levels.  相似文献   

2.
Australian floodplain wetlands are sites of high biodiversity that depend on flows from rivers. Dams, diversions and river management have reduced flooding to these wetlands, altering their ecology, and causing the death or poor health of aquatic biota. Four floodplain wetlands (Barmah‐Millewa Forest and Moira Marshes, Chowilla floodplain, Macquarie Marshes, Gwydir wetlands) illustrate these effects with successional changes in aquatic vegetation, reduced vegetation health, declining numbers of water‐birds and nesting, and declining native fish and invertebrate populations. These effects are likely to be widespread as Australia has at least 446 large dams (>10 m crest height) storing 8.8 × 107 ML (106 L) of water, much of which is diverted upstream of floodplain wetlands. More than 50% of floodplain wetlands on developed rivers may no longer flood. Of all of the river basins in Australia, the Murray‐Darling Basin is most affected with dams which can store 103% of annual runoff and 87% of divertible water extracted (1983–84 data). Some floodplain wetlands are now permanent storages. This has changed their biota from one tolerant of a variable flooding regime, to one that withstands permanent flooding. Plans exist to build dams to divert water from many rivers, mainly for irrigation. These plans seldom adequately model subsequent ecological and hydrological impacts to floodplain wetlands. To avoid further loss of wetlands, an improved understanding of the interaction between river flows and floodplain ecology, and investigations into ecological impacts of management practices, is essential.  相似文献   

3.
黑河流域酒泉绿洲景观生态安全格局分析   总被引:27,自引:5,他引:22  
郭明  肖笃宁  李新 《生态学报》2006,26(2):457-466
以1986年和2000年的酒泉市遥感数据为基础资料,利用GIS软件生成研究区的景观类型图,计算各景观斑块的面积、数目、形状等空间特征和基于景观空间邻接的绿洲生态安全指标,进而在空间格局方面对绿洲的生态安全进行评价,以了解在人类活动影响下酒泉绿洲的生态安全状况,为该地区生态环境保护提供科学依据。结果表明:(1)从1986年到2000年,绿洲不断扩张,各绿洲斑块类型面积呈增加趋势,同时强烈的人类活动也造成了沙地和裸土面积的增加;(2)从1986年到2000年,受沙化威胁程度最大的斑块类型由耕地变成了草地,而城乡居民用地始终是受胁程度最小的斑块类型;除了城乡居民用地,各绿洲斑块类型受沙化的潜在威胁程度是增加的,人类有目的性的干扰活动改变了干旱区有限水资源的分布与分配,社会经济发展的同时导致了生态环境的退化;(3)与1986年相比,2000年各绿洲斑块类型受盐碱化威胁呈减弱趋势,表明注水洗盐改良土壤使得局部地区生态系统向良性方向演替。干旱区绿洲生态环境有脆弱性和易变性的特点,加强区域景观生态建设和生态安全控制有利于将景观演化导入良性循环。  相似文献   

4.
Wetlands densely populate the ecoregion transecting the center of the Prairie Pothole Region (PPR) known as the Missouri Coteau and epicenter to the most productive waterfowl‐breeding habitat in North America. These palustrine, depressional basin waters vacillate with regional drought and deluge, so surface water fluctuations over time modulate wetland productivity, habitat, and water quality functions. Models predict formidable effects of climate change on glacial basin surface waters, yet large‐scale, long‐term observation data are lacking to compare against predicted changes. Current, optical‐based water detection models do not delineate marsh vegetation from shallow, turbid, high‐chlorophyll waters common to the region. We developed a palustrine wetland spectral model for tracking open surface waters using Landsat imagery, which we evaluated for a 2500 km2 landscape that estimates seasonal and annual open water variability for thousands of individual wetlands in the Missouri Coteau ecoregion. Detection accuracy of 96% was achieved for water bodies greater than a half‐pixel in size. We identified shifts in the distribution of water permanence classes within and between years for waters emerging in spring, mid‐summer, and late summer from 1997 to 2005 and identified a maximum of 19 047 basins with open water (12% of the landscape) populating 2500 km2. For the 2005 growing season, we observed only 8757 basins with open water (6% of the landscape) for the same area. Declines were greatest for water bodies detected only in spring, suggesting a loss of those wetlands functioning to recharge groundwater stores early in the season and a high sensitivity to observed reductions in snowfall. If landscape factors driving open water coverage and wetland density are similar for the entire Missouri Coteau, we estimate the number of basins containing at least a pixel of water for this region declined from 577 600 to 266 000 between 1997 and 2005.  相似文献   

5.
川西亚高山森林是我国西南亚高山水源涵养林的重要组成部分.随着20世纪中叶以来农业人口的增加和森林的开发利用,受干扰强度、频度和干扰时间的影响,原始暗针叶林退化为耕地、草地、灌丛、次生阔叶林或人工林.1998年后,该区相继启动天然林保护工程和退耕还林工程.为评价工程效益,确定长江上游水源涵养林的恢复与重建模式,需要进行不同土地利用类型之间生态水文效应的对比分析.通过野外调查与室内实验,对比分析了川西亚高山林区农田、草地、退耕还林地、灌丛、次生桦木林、人工云杉林和老龄针叶林的地被物(苔藓与枯落物)和土壤持水特征,结果表明:不同土地利用与覆盖类型间地被物和土壤持水性能差异显著.随着干扰程度的增加,苔藓、枯落物蓄积量及最大持水量下降,土壤容重增加,土壤持水性能下降.苔藓最大持水量排序是老龄针叶林>人工云杉林>天然次生林>灌丛.枯落物最大持水量排序是老龄针叶林>天然次生林>人工云杉林>灌丛>草地>退耕还林地.人工云杉林与天然次生林之间、草地与退耕还林地之间苔藓和枯落物最大持水量没有显著差异.土壤0~40cm最大持水量排序是天然次生林>老龄针叶林>人工云杉林>灌丛>农田>草地>退耕还林地,其中天然次生林显著高于人工云杉林,草地与退耕还林地之间没有显著差异.对于森林恢复途径和树种的选择,需要考虑未来林分的多种生态系统服务功能.  相似文献   

6.
Here, we evaluate the ecosystem functioning and the ecosystems services supply of different vegetation types (grasslands, shrublands and woodlands) under contrasting management regimes by comparing a protected area with the surrounding landscape, which has been subjected to human disturbance in the Eastern Hills of Uruguay. We propose, based on functional attributes and vegetation physiognomy, a State and Transition Model for the dynamics of the grassland–woodland mosaic. We used remote sensing techniques to: (i) develop a land‐cover map of the study area based on supervised Landsat imagery classification, and (ii) compare attributes of the ecosystem functioning (productivity and seasonality) and service supply derived from the Normalized Difference Vegetation Index (NDVI) images provided by the moderate resolution imaging spectroradiometer (MODIS) sensor. The land‐cover map showed that grasslands and shrublands were the most extensive land covers in the study area. These vegetation types presented higher productivity, seasonality and ecosystem service supply, outside the protected area than inside it. On the other hand, woodlands showed higher productivity, ecosystem service supply and lower seasonality inside the protected area than outside of it. Two axes represented the grassland–woodland mosaic dynamic: (i) the mean annual and (ii) the intra‐annual coefficient of variation of the NDVI. Our results highlight that conservation of grasslands, shrublands and woodlands require different management strategies based on particular disturbance regimes like moderate grazing and controlled burns. Moderate disturbances may help to preserve ecosystem services provisioning in grasslands and shrublands. On the contrary, woodland conservation requires a more rigorous regime of protection against disturbances.  相似文献   

7.
Kasparek  Max  Demirsoy  Ali  Akbulut  Aydin  Akbulut  Nuray  Çalişkan  Mustafa  Durmuş  Yusuf 《Hydrobiologia》2000,441(1):37-44
A survey of all the major potential habitats in western Turkey showed that medicinal leeches, Hirudo medicinalis L., are widely distributed over the country and are not rare. They occur in practically all suitable habitats and the only region where they were found to be absent is that of the large river deltas in the south of the country (Çukurova deltas, Göksu delta). There may be zoogeographic reasons for this (Taurus mountains barrier). The application of a semi-quantitative survey method using collecting efficiency (number of leeches collected per hour by a single person) allowed a rapid assessment to be made of its status in a large number of wetlands. Leech density varied considerably from wetland to wetland, and the results enabled a ranking of the Turkish wetlands to be made according to their importance for medicinal leeches. Taking both the leech density and the size of leech habitats into account, the largest populations were identified on the Black Sea coast (Kizilirmak delta, Yeilirmak delta and Karagöl Marshes near Sinop) and in inner and south-west Anatolia (Eber Gölü, Karamik and Sultan Marshes). Commercial exploitation for the pharmaceutical industry and for other purposes takes place at only a few places and does not appear to affect the population seriously. However, many populations are threatened by the draining of their habitats.  相似文献   

8.
Ecosystem health is an important research topic. Several studies have mainly focused on ecosystem health assessment (EHA) on a large or medium scale, with only a few studies using small grids as research units. Based on the Vigor–Organization–Resilience–Services (VORS) model, which can adequately compute multiple ecosystem values for each land use type, this study used a scale with a 250 m × 250 m grid as the spatial research unit to quantitatively and dynamically assess the ecosystem health and analyze its spatial implications in the Liuxi River Basin, Guangzhou, China. The results showed that the ecosystem health level of each land use type is ranked as follows: water areas > shrublands > grasslands > wetlands > broadleaf forests > drylands > construction land. The amount of construction land area rapidly increased from 2005 to 2018 at the cost of a substantial loss of broadleaf forests, shrublands, and wetlands, which led to a decline in ecosystem health values. Thus, anthropogenic activities such as urbanization and deforestation were the main driving factors affecting land use changes and spatial distribution of ecosystem health. Furthermore, the correlation between ecosystem services (ES) and ecosystem health was the strongest, indicating that ES was a key indicator contributing to ecosystem health in the Liuxi River Basin. The ecosystem health of the Liuxi River Basin had a significant positive spatial aggregation effect which gradually increased from 2005 to 2018. The high–high aggregation areas were mainly clustered in water areas and grasslands, and the low–low aggregation areas were mainly clustered in construction zones and paddy fields. This study provides an important reference for evaluating ecosystem health based on the VORS model, ecological conservation, and the management of small basins in the context of rapid urbanization.  相似文献   

9.
The effects of starvation on larval growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum at the temperature of 19.6–21.6 °C, the salinity of 34‰ and pH of 8.0 were investigated from May 18 to July 18, 2006. In this study, the early, middle and late umbo-veliger larvae with the shell lengths of 100, 140, and 190 μm were subject to temporary food deprivation for up to 4.5, 20, and 25d at 0.5, 4, 5d intervals, followed by refeeding for the remaining of a 24, 20, 25d period, respectively. The results suggested that the larvae should have shown considerable tolerance to starvation due to their endogenous and exterior nutrition material, for larvae and time to the point-of-no-return (PNR: the threshold point during starvation after which larvae could no longer metamorphose even if food is provided) were calculated to be 4.25, 17.54, and 22.17d. As the starvation period prolonged, the mean shell length of larvae starved got close to constants at 1.5, 4, and 15d after starvation, which were different for larvae at different stages when starvation began, survival of larvae decreased, and was lower in treatments starved earlier in development than those starved later, for the early, middle and late umbo-veliger larvae, after 4.5, 20 and 25d of starvation period, few larvaes were alive. After starvation period, the alive larvaes were able to metamorphose and had a capability of compensatory growth when refeeding was given. Starvation not only affected metamorphosis rate, but also caused the delay in the time to metamorphosis and the decrease in the metamorphosed sizes. For example, for the continuously-fed larvae, duration to metamorphosis was 20.7d, for larvae with a size of 100-μm starved for up to 4d, larvae with a size of 140-μm starved for up to 16d, larvae with a size of 190-μm starved for up to 20d, duration to metamorphosis were 29.7, 31.7, and 37.7d, the delay in duration to metamorphosis were 9, 11, and 17d, respectively. Furthermore, importance of nutrition material for maintaining larval survival during starvation and the compensatory growth on larvae at the same feeding time were discussed.  相似文献   

10.
Spatiotemporal dynamic information on surface water area and level is a prerequisite for effective wetland conservation and management. However, such information is either unavailable or difficult to obtain. In this study, for the first time, we leverage Landsat imagery, ICESat-2 and airborne LiDAR data to develop time series of water body dynamics over the last 35 years (1987–2021) using machine learning method on a cloud computing platform for lakes identified as international importance in the Western District Lakes Ramsar site in Victoria, Australia. Our results reveal distinct seasonal (dry and wet) variation patterns and long-term changes in trends of lake water areas and levels in response to seasonal rainfall variations and regional climate changes for the periods of before, during and after the Millennium Drought when southeast Australia experienced unprecedented dry conditions. Lake water bodies have not recovered to the status of pre-Millennium Drought, and many permanent Ramsar-listed lakes in the region have become to ephemeral lakes due to climate change. The outcome of this study provides a baseline to help understand the historical and ongoing status of the Ramsar-listed lakes in a warming and drying climate in support of the development of strategic plan to implement international obligations for wetlands protection under the Ramsar Convention.  相似文献   

11.
Fire is considered as an extreme disturbance in Mediterranean grasslands or shrublands as it often brings about many sudden changes in the vegetation structure, composition, and diversity patterns. In addition, it creates opportunities for exotic plant species to establish successfully in foreign habitat, and to outperform dominating native species. Monitoring and simulating post-fire successional changes, therefore, are essential tasks to efficiently restore native grasslands or shrublands. In this paper, we develop a theoretical framework for simulating fire-induced successional changes, mainly for Mediterranean vegetation, based on a three-level hierarchy of successional causes. Within this proposed framework, fire effects are considered by associating it with the number of burned sites open-up and specific changes at the burned sites relative to unburned sites. Three distinct site-specific neighborhoods are constructed; changes within each neighborhood allow sequential replacement of plant species by another plant species with greater maximum size, age and lower maximum growth rates and dispersal abilities. The proposed framework can be used to develop a spatially explicit individual-based model which will be useful for monitoring and predicting successional changes and hence for restoring native grasslands or shrublands.  相似文献   

12.
Land use land cover (LULC) changes frequently in ecotones due to the large climate and soil gradients, and complex landscape composition and configuration. Accurate mapping of LULC changes in ecotones is of great importance for assessment of ecosystem functions/services and policy-decision support. Decadal or sub-decadal mapping of LULC provides scenarios for modeling biogeochemical processes and their feedbacks to climate, and evaluating effectiveness of land-use policies, e.g. forest conversion. However, it remains a great challenge to produce reliable LULC maps in moderate resolution and to evaluate their uncertainties over large areas with complex landscapes. In this study we developed a robust LULC classification system using multiple classifiers based on MODIS (Moderate Resolution Imaging Spectroradiometer) data and posterior data fusion. Not only does the system create LULC maps with high statistical accuracy, but also it provides pixel-level uncertainties that are essential for subsequent analyses and applications. We applied the classification system to the Agro-pasture transition band in northern China (APTBNC) to detect the decadal changes in LULC during 2003–2013 and evaluated the effectiveness of the implementation of major Key Forestry Programs (KFPs). In our study, the random forest (RF), support vector machine (SVM), and weighted k-nearest neighbors (WKNN) classifiers outperformed the artificial neural networks (ANN) and naive Bayes (NB) in terms of high classification accuracy and low sensitivity to training sample size. The Bayesian-average data fusion based on the results of RF, SVM, and WKNN achieved the 87.5% Kappa statistics, higher than any individual classifiers and the majority-vote integration. The pixel-level uncertainty map agreed with the traditional accuracy assessment. However, it conveys spatial variation of uncertainty. Specifically, it pinpoints the southwestern area of APTBNC has higher uncertainty than other part of the region, and the open shrubland is likely to be misclassified to the bare ground in some locations. Forests, closed shrublands, and grasslands in APTBNC expanded by 23%, 50%, and 9%, respectively, during 2003–2013. The expansion of these land cover types is compensated with the shrinkages in croplands (20%), bare ground (15%), and open shrublands (30%). The significant decline in agricultural lands is primarily attributed to the KFPs implemented in the end of last century and the nationwide urbanization in recent decade. The increased coverage of grass and woody plants would largely reduce soil erosion, improve mitigation of climate change, and enhance carbon sequestration in this region.  相似文献   

13.
Although grasslands harbour significant biodiversity and their restoration is common in biodiversity conservation, we know very little about how such interventions influence arthropod groups. Here we compared orthopteran assemblages in croplands, natural grasslands and one to four-year-old grasslands restored in a large-scale programme in Hortobágy National Park (East Hungary). We sampled orthopterans by standardized sweep-netting both in a repeated measures design from Year 0 (croplands) to 4 and in a space-for-time substitution (chronosequence) design in 2009. Species richness, abundance and Shannon diversity of orthopterans decreased in Year 1 following restoration, but increased afterwards. By Year 4, species richness doubled and abundance increased almost ten-fold in restored grasslands compared to croplands. Species composition diversified compared to croplands and progressed towards natural grasslands. Local restoration conditions (last crop, seed mixture) and landscape configuration (proportion of natural grasslands) did not influence the above patterns in either study design, whereas time since restoration affected almost all community variables. We found that ubiquitous generalist species were the first to appear in restored grasslands and that species characteristic to the target natural grasslands colonised gradually in later years. The qualitative and quantitative properties of the orthopteran assemblages in restored fields did not yet reach those of natural grasslands, therefore, our study suggests that the full regeneration of the orthopteran assemblages takes more than four years. We also concluded that the repeated-measures design was more sensitive to subtle changes and was thus more effective than the chronosequence design at detecting post-restoration changes in orthopteran assemblages.  相似文献   

14.
The resource island hypothesis predicts that soil resources such as nitrogen, phosphorus, and water will be distributed evenly in grasslands but have a patchy distribution focused around plants in shrublands. This hypothesis predicts that microorganism numbers will follow resources and be (i) evenly distributed in grasslands, (ii) concentrated around individual plants in shrublands, and (iii) higher where resources are higher when comparing the same vegetation type. This study enumerated total heterotrophic bacteria and a subset of these, the nitrogen-efficient guild (NEG), in three shrublands (playa fringe mesquite, tar bush, and creosote) and two grasslands (playa and bajada). Both heterotrophs and NEG members followed the distribution pattern predicted by the resource island hypothesis. There were no significant differences in heterotroph or NEG numbers comparing at-plant and interplant samples for both the playa and bajada grasslands. Furthermore, populations were generally higher in nutrient-rich playa grasslands than nutrient-poor bajada grasslands. In contrast, both heterotroph and NEG numbers were higher at shrubs than between shrubs in all three shrub sites. These results suggest that resource abundance in resource islands predicts the distribution of heterotrophic bacterial numbers in desert soils.  相似文献   

15.
Carbon sequestration programs, including afforestation and reforestation, are gaining attention globally and will alter many ecosystem processes, including water yield. Some previous analyses have addressed deforestation and water yield, while the effects of afforestation on water yield have been considered for some regions. However, to our knowledge no systematic global analysis of the effects of afforestation on water yield has been undertaken. To assess and predict these effects globally, we analyzed 26 catchment data sets with 504 observations, including annual runoff and low flow. We examined changes in the context of several variables, including original vegetation type, plantation species, plantation age, and mean annual precipitation (MAP). All of these variables should be useful for understanding and modeling the effects of afforestation on water yield. We found that annual runoff was reduced on average by 44% (±3%) and 31% (±2%) when grasslands and shrublands were afforested, respectively. Eucalypts had a larger impact than other tree species in afforested grasslands (P=0.002), reducing runoff (90) by 75% (±10%), compared with a 40% (±3%) average decrease with pines. Runoff losses increased significantly with plantation age for at least 20 years after planting, whether expressed as absolute changes (mm) or as a proportion of predicted runoff (%) (P<0.001). For grasslands, absolute reductions in annual runoff were greatest at wetter sites, but proportional reductions were significantly larger in drier sites (P<0.01 and P<0.001, respectively). Afforestation effects on low flow were similar to those on total annual flow, but proportional reductions were even larger for low flow (P<0.001). These results clearly demonstrate that reductions in runoff can be expected following afforestation of grasslands and shrublands and may be most severe in drier regions. Our results suggest that, in a region where natural runoff is less than 10% of MAP, afforestation should result in a complete loss of runoff; where natural runoff is 30% of precipitation, it will likely be cut by half or more when trees are planted. The possibility that afforestation could cause or intensify water shortages in many locations is a tradeoff that should be explicitly addressed in carbon sequestration programs.  相似文献   

16.
Aim We present the first global synthesis of plant canopy leaf area index (LAI) measurements from more than 1000 published estimates representing ~400 unique field sites. LAI is a key variable for regional and global models of biosphere‐atmosphere exchanges of energy, carbon dioxide, water vapour, and other materials. Location The location is global, geographically distributed. Results Biomes with LAI values well represented in the literature included croplands, forests and plantations. Biomes not well represented were deserts, shrublands, tundra and wetlands. Nearly 40% of the records in the database were published in the past 10 years (1991–2000), with a further 20% collected between 1981 and 1990. Mean (± SD) LAI, distributed between 15 biome classes, ranged from 1.3 ± 0.9 for deserts to 8.7 ± 4.3 for tree plantations, with temperate evergreen forests (needleleaf and broadleaf) displaying the highest average LAI (5.1–6.7) among the natural terrestrial vegetation classes. Following a statistical outlier analysis, the global mean (± SD) LAI decreased from 5.2 (4.1) to 4.5 (2.5), with a maximum LAI of 18. Biomes with the highest LAI values were plantations > temperate evergreen forests > wetlands. Those with the lowest LAI values were deserts < grasslands < tundra. Mean LAI values for all biomes did not differ statistically by the methodology employed. Direct and indirect measurement approaches produced similar LAI results. Mean LAI values for all biomes combined decreased significantly in the 1990s, a period of substantially more studies and improved methodologies. Main conclusions Applications of the LAI database span a wide range of ecological, biogeochemical, physical, and climate research areas. The data provide input to terrestrial ecosystem and land‐surface models, for evaluation of global remote sensing products, for comparisons to field studies, and other applications. Example uses of the database for global plant productivity, fractional energy absorption, and remote sensing studies are highlighted.  相似文献   

17.
Successional patterns, water quality changes, and effects of hydrologic pulsing are documented for a whole-ecosystem experiment involving two created wetlands that have been subjected to continuous inflow of pumped river water for more than 10 years. At the beginning of the growing season in the first year of the experiment (1994), 2400 individuals representing 13 macrophyte species were introduced to one of the wetland basins. The other basin was an unplanted control. Patterns of succession are illustrated by macrophyte community diversity and net aboveground primary productivity, soil development, water quality changes, and nutrient retention for the two basins. The planted wetland continued to be more diverse in plant cover 10 years after planting and the unplanted wetland appeared to be more productive but more susceptible to stress. Soil color and organic content continued to change after wetland creation and wetlands had robust features of hydric soils within a few years of flooding. Organic matter content in surface soils in the wetlands increased by approximately 1% per 3-year period. Plant diversity and species differences led to some differences in the basins in macrophyte productivity, carbon sequestration, water quality changes and nutrient retention. The wetlands continued to retain nitrate–nitrogen and soluble reactive phosphorus 10 years after their creation. There are some signs that sediment and total phosphorus retention are diminishing after 10 years of river flow. Preliminary results from the beginnings of a flood pulsing experiment in the two basins in 2003–2004 are described for water quality, nutrient retention, aboveground productivity, and methane and nitrous oxide gaseous fluxes.  相似文献   

18.
Agricultural acceleration of soil carbonate weathering   总被引:2,自引:0,他引:2  
Soil carbonates (i.e., soil inorganic carbon or SIC) represent more than a quarter of the terrestrial carbon pool and are often considered to be relatively stable, with fluxes significant only on geologic timescales. However, given the importance of climatic water balance on SIC accumulation, we tested the hypothesis that increased soil water storage and transport resulting from cultivation may enhance dissolution of SIC, altering their local stock at decadal timescales. We compared SIC storage to 7.3 m depth in eight sites, each having paired plots of native vegetation and rain‐fed croplands, and half the sites having additional irrigated cropland plots. Rain‐fed and irrigated croplands had 328 and 730 Mg C/ha less SIC storage, respectively, compared to their native vegetation (grassland or woodland) pairs, and irrigated croplands had 402 Mg C/ha less than their rain‐fed pairs (p < .0001). SIC contents were negatively correlated with estimated groundwater recharge, suggesting that dissolution and leaching may be responsible for SIC losses observed. Under croplands, the remaining SIC had more modern radiocarbon and a δ13C composition that was closer to crop inputs than under native vegetation, suggesting that cultivation has led to faster turnover and incorporation of recent crop carbon into the SIC pool (p < .0001). The losses occurred just 30–100 years after land‐use changes, indicating SIC stocks that were stable for millennia can rapidly adjust to increased soil water flows. Large SIC losses (194–242 Mg C/ha) also occurred below 4.9 m deep under irrigated croplands, with SIC losses lagging behind the downward‐advancing wetting front by ~30 years, suggesting that even deep SIC were affected. These observations suggest that the vertical distribution of SIC in dry ecosystems is dynamic on decadal timescales, highlighting its potential role as a carbon sink or source to be examined in the context of land use and climate change.  相似文献   

19.
从湿地到农田:围垦对生态系统碳排放的影响   总被引:2,自引:0,他引:2  
侯颖  李红  赵敏  熊俊  戴圣骐  赵斌  胡静  郭海强 《生态学杂志》2017,28(8):2517-2526
湿地围垦转化为农田直接影响碳循环过程,但之前的众多研究忽略了相关人为活动如农资生产、农用器械使用等所产生的碳排放.为了更全面认识湿地围垦为农田所导致的这种变化,以崇明岛为研究地区,基于通量观测和生命周期评价,本文分别探讨当考虑和不考虑人为活动伴随的碳排放时,生态系统总碳排放的变化.结果表明: 如果只考虑生态系统与大气间的碳通量,农田仍表现为碳汇,但与自然湿地相比,其碳排放增加了10.47 t (CO2-eq)·hm-2;当将农业生产中人为活动碳排放纳入计算后,崇明岛自然湿地和围垦农田的碳排放总量分别为-15.38和6.54 t (CO2-eq)·hm-2,碳排放增加了21.92 t (CO2-eq)·hm-2,其中,人为活动碳排放为11.45 t (CO2-eq)·hm-2;田间种植和农资生产的碳排放共占农田生命周期碳排放总量的84.6%,化肥的生产施用是农田生命周期碳排放的主要来源之一.围垦使生态系统乃至区域尺度的碳源汇属性发生变化,需重新评估其影响;同时,为了达到低碳农业的目的,需减少化肥施用、提高化肥使用效率.  相似文献   

20.
基于多时相的Landsat MSS/TM/ETM+遥感影像数据,采用决策树分类法提取1989—2011年共49景东洞庭湖不同水位条件下的草洲出露面积,结合1985—2011年城陵矶日水位数据及数字高程模型,分析草洲时空变化特征并阐明其变化趋势.结果表明: 研究区出露草洲面积受水位影响显著,两者呈极显著的线性关系(R2=0.875,P<0.001),出露草洲面积随水位的升高而逐渐减小,且水位越高,对草洲出露面积的影响越小.草洲出露面积随水位呈现规律性变化,1—7月,水位上升,草洲面积减少;7—12月,水位下降,草洲出露面积增加.1989—2011年,草洲出露面积持续增加,新增草洲主要由泥滩地转化而来;草洲扩张是各高程段草洲面积共同增加的结果,低位洲滩(黄海高程22~25 m)草洲面积的快速增加是湿地草洲扩张的主导部分.各高程水位变化是研究期间东洞庭湖草洲出露面积变化的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号