首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The human glutaminyl-tRNA synthetase is able to bind to its own mRNA. The enzyme contains two binding regions. One is located in the central section of the enzyme which includes its most hydrophilic portion with ten lysine residues in a block of 20 amino acids. This part of the enzyme binds unspecifically to all RNA sequences tested. A second binding region is located in that part of the enzyme which shows high degrees of sequence similarities with the bacterial and yeast glutaminyl-tRNA synthetases, and which is most likely responsible for the charging of tRNA with glutamine. This second RNA binding region specifically interacts with a site in the 3' noncoding region of the synthetase's mRNA. The binding site in the mRNA is characterized by an extended secondary structure that includes elements of the 'identity set' of nucleotides recognized by the enzyme when interacting with tRNA. We discuss possible physiological implications of the interaction between glutaminyl-tRNA synthetase and its mRNA.  相似文献   

2.
Summary Aminoacyl-tRNA synthetases are important components of the genetic apparatus. In spite of common catalytic properties, synthetases with different amino acid specificities are widely diverse in their primary structures, subunit sizes, and subunit composition. However, synthetases with given amino acid specificities are well conserved throughout evolution. We have been studying the human glutaminyl-tRNA synthetase possessing a sequence of about 400 amino acid residues (the core region) that is very similar to sequences in the corresponding enzymes from bacteria and yeast. The conserved sequence appears to be essential for the basic function of the enzyme, the charging of tRNA with glutamine. As a first step to a better understanding of the evolution of this enzyme, we determined the coding region for the conserved part of the human glutaminyl-tRNA synthetase. The coding region is composed of eight exons. It appears that individual exons encode defined secondary structural elements as parts of functionally important domains of the enzyme. Evolution of the gene by assembly of individual exons seems to be a viable hypothesis; alternative pathways are discussed. Offprint requests to: R. Knippers  相似文献   

3.
The human glutaminyl-tRNA synthetase is three times larger than the corresponding bacterial and twice as large as the yeast enzyme. It is possible that the additional sequences of the human glutaminyl-tRNA synthetase are required for the formation of the multienzyme complex which is known to include several of aminoacyl-tRNA synthetases in mammalian cells. To address this point we prepared antibodies against three regions of the human glutaminyl-tRNA synthetase, namely against its enzymatically important core region, and against two sections in its large C-terminal extension. In intact multienzyme complexes the core region was accessible to specific antibody binding. However, the C-terminal sections became available to specific antibody binding only when certain components of the multienzyme complex were either absent or degraded. These findings allow first conclusions as to the relative position of some components in the mammalian aminoacyl-tRNA synthetase complex.  相似文献   

4.
The glutamyl-tRNA synthetase (GluRS) of Bacillus subtilis 168T aminoacylates with glutamate its homologous tRNA(Glu) and tRNA(Gln) in vivo and Escherichia coli tRNA(1Gln) in vitro (Lapointe, J., Duplain, L., and Proulx, M. (1986) J. Bacteriol. 165, 88-93). The gltX gene encoding this enzyme was cloned and sequenced. It encodes a protein of 483 amino acids with a Mr of 55,671. Alignment of the amino acid sequences of four bacterial GluRSs (from B. subtilis, Bacillus stearothermophilus, E. coli, and Rhizobium meliloti) gives 20% identity and reveals the presence of several short highly conserved motifs in the first two thirds of these proteins. Conserved motifs are found at corresponding positions in several other aminoacyl-tRNA synthetases. The only sequence similarity between the GluRSs of these Bacillus species and the E. coli glutaminyl-tRNA synthetase (GlnRS), which has no counterpart in the E. coli GluRS, is in a segment of 30 amino acids in the last third of these synthetases. In the three-dimensional structure of the E. coli tRNA(Gln).GlnRS.ATP complex, this conserved peptide is near the anticodon of tRNA(Gln) (Rould, M. A., Perona, J. J., S?ll, D., and Steitz, T. A. (1989) Science 246, 1135-1142), suggesting that this region is involved in the specific interactions between these enzymes and the anticodon regions of their tRNA substrates.  相似文献   

5.
The Aspergillus nidulans gene (acvA) encoding the first catalytic steps of penicillin biosynthesis that result in the formation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), has been positively identified by matching a 15-amino acid segment of sequence obtained from an internal CNBr fragment of the purified amino-terminally blocked protein with that predicted from the DNA sequence. acvA is transcribed in the opposite orientation to ipnA (encoding isopenicillin N synthetase), with an intergenic region of 872 nucleotides. The gene has been completely sequenced at the nucleotide level and found to encode a protein of 3,770 amino acids (molecular mass, 422,486 Da). Both fast protein liquid chromatography and native gel estimates of molecular mass are consistent with this predicted molecular weight. The enzyme was identified as a glycoprotein by means of affinity blotting with concanavalin A. No evidence for the presence of introns within the acvA gene has been found. The derived amino acid sequence of ACV synthetase (ACVS) contains three homologous regions of about 585 residues, each of which displays areas of similarity with (i) adenylate-forming enzymes such as parsley 4-coumarate-CoA ligase and firefly luciferase and (ii) several multienzyme peptide synthetases, including bacterial gramicidin S synthetase 1 and tyrocidine synthetase 1. Despite these similarities, conserved cysteine residues found in the latter synthetases and thought to be essential for the thiotemplate mechanism of peptide biosynthesis have not been detected in the ACVS sequence. These observations, together with the occurrence of putative 4'-phosphopantetheine-attachment sites and a putative thioesterase site, are discussed with reference to the reaction sequence leading to production of the ACV tripeptide. We speculate that each of the homologous regions corresponds to a functional domain that recognizes one of the three substrate amino acids.  相似文献   

6.
We have isolated from a Lambda-gt 11 library a human cDNA clone with one open reading frame of about 2400 bases. A stretch of about 350 amino acids in the deduced amino acid sequence is up to 40 percent identical with parts of the known amino acid sequences of E. coli and yeast glutaminyl (Gln)-tRNA synthetase. The isolated cDNA sequence corresponds to an internal section of a 5500 bases long mRNA that codes for a 170 kDa polypeptide associated with Gln-tRNA synthetase. Thus, the human enzyme is about three times larger than the E. coli and two times larger than the yeast Gln-tRNA synthetase. The three enzymes share an evolutionarily conserved core but differ in amino acid sequences linked to the N-terminal and C-terminal side of the core.  相似文献   

7.
Medium chain acyl-CoA synthetases catalyze the first reaction of amino acid conjugation of many xenobiotic carboxylic acids and fatty acid metabolism. This paper reports studies on purification, characterization, and the partial amino acid sequence of mouse liver enzyme. The medium chain acyl-CoA synthetase was isolated from mouse liver mitochondria. The purified enzyme catalyzes this reaction not only for straight medium chain fatty acids but also for aromatic and arylacetic acids. Maximal activity was found with hexanoic acid. High activities were obtained with benzoic acid having methyl, pentyl, and methoxy groups in the para- or meta-positions of the benzene ring. However, the enzyme was less active with valproic acid and ketoprofen. Salicylic acid exhibited no activity. The medium chain acyl-CoA synthetases from mouse and bovine liver mitochondria were subjected to in-gel tryptic digestion, followed by LC-MS/MS sequence analysis. The amino acid sequence of each tryptic peptide of mouse liver mitochondrial medium chain acyl-CoA synthetase differed from that from bovine liver mitochondria only in one or two amino acids. LC-MS/MS analysis provided the information about these differences in amino acid sequences. In addition, we compared the properties of this protein with the homologues from rat and bovine.  相似文献   

8.
Structure and evolution of a group of related aminoacyl-tRNA synthetases   总被引:5,自引:0,他引:5  
A yeast nuclear gene, designated MSK1, has been selected from a yeast genomic library by transformation of a respiratory deficient mutant impaired in acylation of mitochondrial lysine tRNA. This gene confers a respiratory competent phenotype and restores the mutant's ability to acylate the mitochondrial lysine tRNA. The amino acid sequence of the protein encoded by MSK1 is homologous to yeast cytoplasmic lysyl-tRNA synthetase and to the product of the herC gene, which has recently been suggested to code for the Escherichia coli enzyme. These observations indicate that MSK1 codes for the lysyl-tRNA synthetase of yeast mitochondria. Several regions of high primary sequence conservation have been identified in the bacterial and yeast lysyl-tRNA synthetases. These domains are also present in the aspartyl- and asparaginyl-tRNA synthetases, further confirming the notion that all three present-day enzymes originated from a common ancestral gene. The most conserved domain, located near the carboxyl terminal ends of this group of synthetases is characterized by a cluster of glycines and is also highly homologous to the carboxyl-terminal region of the E. coli ammonia-dependent asparagine synthetase. A catalytic function of the carboxyl terminal domain is indicated by in vitro mutagenesis of the yeast mitochondrial lysyl-tRNA synthetase. Replacement of any one of three glycine residues by alanine and in one case by aspartic acid completely suppresses the activity of the enzymes, as evidenced by the inability of the mutant genes to complement an msk1 mutant, even when present in high copy. Other mutations result in partial loss of activity. Only one glycine replacement affects the stability of the protein in vivo. The observed presence of a homologous domain in asparagine synthetase, which, like the aminoacyl-tRNA synthetases, catalyzes the formation of an aminoacyladenylate, suggests that the glycine-rich sequence is part of a catalytic site involved in binding of ATP and of the aminoacyladenylate intermediate.  相似文献   

9.
The ileS gene encoding the isoleucyl-tRNA synthetase of the thermophilic archaebacterium Methanobacterium thermoautotrophicum Marburg was isolated and sequenced. ileS was closely flanked by an unknown open reading frame and by purL and thus is arranged differently from the organizations observed in several eubacteria or in Saccharomyces cerevisiae. The deduced amino acid sequence of isoleucyl-tRNA synthetase was compared with primary sequences of isoleucyl-, valyl-, leucyl-, and methionyl-tRNA synthetases from eubacteria and yeast. The archaebacterial enzyme fitted well into this group of enzymes. It contained the two short consensus sequences observed in class I aminoacyl-tRNA synthetases as well as regions of homology with enzymes of the isoleucine family. Comparison between the isoleucyl-tRNA synthetases of M. thermoautotrophicum yielded 36% amino acid identity with the yeast enzyme and 32% identity with the corresponding enzyme from Escherichia coli. The ileS gene of the pseudomonic acid-resistant M. thermoautotrophicum mutant MBT10 was also sequenced. The mutant enzyme had undergone a glycine to aspartic acid transition at position 590, in a conserved region comprising the KMSKS consensus sequence. The inhibition constants of pseudomonic acid, KiIle and KiATP, for the mutant enzyme were 10-fold higher than those determined for the wild-type enzyme. Both the mutant and the wild-type ileS gene were expressed in E. coli, and their products displayed the expected difference in sensitivity toward pseudomonic acid.  相似文献   

10.
Squalene synthetase (farnesyl diphosphate:farnesyl diphosphate farnesyltransferase; EC 2.5.1.21) is thought to represent a major control point of isoprene and sterol biosynthesis in eukaryotes. We demonstrate structural and functional conservation between the enzymes from humans, a budding yeast (Saccharomyces cerevisiae), and a fission yeast (Schizosaccharomyces pombe). The amino acid sequences of the human and S. pombe proteins deduced from cloned cDNAs were compared to those of the known S. cerevisiae protein. All are predicted to encode C-terminal membrane-spanning proteins of approximately 50 kDa with similar hydropathy profiles. Extensive sequence conservation exists in regions of the enzyme proposed to interact with its prenyl substrates (i.e., two farnesyl diphosphate molecules). Many of the highly conserved regions are also present in phytoene and prephytoene diphosphate synthetases, enzymes which catalyze prenyl substrate condensation reactions analogous to that of squalene synthetase. Expression of cDNA clones encoding S. pombe or hybrid human-S. cerevisiae squalene synthetases reversed the ergosterol requirement of S. cerevisiae cells bearing ERG9 gene disruptions, showing that these enzymes can functionally replace the S. cerevisiae enzyme. Inhibition of sterol synthesis in S. cerevisiae and S. pombe cells or in cultured human fibroblasts by treatment with the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor lovastatin resulted in elevated levels of squalene synthetase mRNA in all three cell types.  相似文献   

11.
12.
We report the DNA sequence of the valS gene from Bacillus stearothermophilus and the predicted amino acid sequence of the valyl-tRNA synthetase encoded by the gene. The predicted primary structure is for a protein of 880 amino acids with a molecular mass of 102,036. The molecular mass and amino acid composition of the expressed enzyme are in close agreement with those values deduced from the DNA sequence. Comparison of the predicted protein sequence with known protein sequences revealed a considerable homology with the isoleucyl-tRNA synthetase of Escherichia coli. The two enzymes are identical in some 20-25% of their amino acid residues, and the homology is distributed approximately evenly from N-terminus to C-terminus. There are several regions which are highly conservative between the valyl- and isoleucyl-tRNA synthetases. In one of these regions, 15 of 20 amino acids are identical, and in another, 10 of 14 are identical. The valyl-tRNA synthetase also contains a region HLGH (His-Leu-Gly-His) near its N-terminus equivalent to the consensus HIGH (His-Ile-Gly-His) sequence known to participate in the binding of ATP in the tyrosyl-tRNA synthetase. This is the first example of extensive homology found between two different aminoacyl-tRNA synthetases.  相似文献   

13.
Cysteinyl-tRNA synthetase catalyzes the addition of cysteine to its cognate tRNA. The available eukaryotic sequences for this enzyme contain several insertions that are absent from bacterial sequences. To gain insights into the differences between the bacterial and eukaryotic forms, we previously studied the E. coli cysteinyl-tRNA synthetase. In this study, we sought to clone and express the full-length gene for the human cytoplasmic cysteinyl-tRNA synthetase. Although a gene encoding the human enzyme has been described, the predicted protein sequence, consisting of 638 amino acids, lacks homology with other eukaryotic enzymes in the carboxyl-terminus. This suggested that a further investigation was necessary to obtain the definitive sequence for the human enzyme. Here we report the isolation of a full-length cDNA that encodes a protein of 748 amino acids. The predicted protein sequence shows considerable similarity to other eukaryotic cysteinyl-tRNA synthetases in the carboxyl-terminus. We also found that approximately 20% of the mRNA encoding the cytoplasmic cysteinyl-tRNA synthetase contained an insertion of 8 bases in the 3' coding region of the mRNA. This insertion arises from an alternative splicing between the last two exons of the gene. The alternative splicing alters the reading frame and results in the replacement of the carboxy-terminal 44 amino acids with a novel sequence of 22 amino acids. Expression of the full-length and alternative forms of the enzyme in E. coli generated functional proteins that were active in aminoacylation of human cytoplasmic tRNA(Cys) with cysteine.  相似文献   

14.
Eight of the mammalian aminoacyl-tRNA synthetases associate as a multienzyme complex, whereas prokaryotic and low eukaryotic synthetases occur only as free soluble enzymes. Association of the synthetases may result in effective compartmentalization of synthetases and suggests the association of the entire protein biosynthetic machinery. To elucidate the structural elements and the nature of the molecular interactions involved in the association of the synthetases, we have cloned and sequenced the complementary DNA coding human aspartyl-tRNA synthetase. The full length cDNA encodes an open reading frame of 500 amino acids with 56% identity with yeast aspartyl-tRNA synthetase. The similarity with yeast aspartyl-tRNA synthetase is unevenly distributed with a high percent of identity at the C-terminus and relatively low identity at the N-terminus. The N-terminal sequence strongly prefers an alpha-helical secondary structure and shows amphiphilic characteristics. Further comparison with the yeast synthetases showed that the basic positively charged helixes in yeast synthetases are evolved to a neutral amphiphilic helix in this mammalian synthetase. The mammalian neutral amphiphilic helix is so far unique among all known sequences of bacterial, yeast, and mammalian synthetases and may account for the association of synthetases in the synthetase complex.  相似文献   

15.
The gltX gene encoding the glutamyl-tRNA synthetase of Escherichia coli and adjacent regulatory regions was isolated and sequenced. The structural gene encodes a protein of 471 amino acids whose molecular weight is 53,810. The codon usage is that of genes highly expressed in E. coli. The amino acid sequence deduced from the nucleotide sequence of the gltX gene was confirmed by mass spectrometry of large peptides derived from the glutamyl-tRNA synthetase. The observed peptides confirm 73% of the predicted sequence, including the NH2-terminal and the COOH-terminal segments. Sequence homology between the glutamyl-tRNA synthetase and other aminoacyl-tRNA synthetases of E. coli was found in four segments. Three of them are aligned in the same order in all the synthetases where they are present, but the intersegment spacings are not constant; these ordered segments may come from a progenitor to which other domains were added. Starting from the NH2-end, the first two segments are part of a longer region of homology with the glutaminyl-tRNA synthetase, without need for gaps; its size, about 100 amino acids, is typical of a single folding domain. In the first segment, containing sequences homologous to the HIGH consensus, the homology is consistent with the following evolutionary linkage: gltX----glnS----metS----ileS and tyrS.  相似文献   

16.
A highly conserved protein motif characteristic of Class II aminoacyl tRNA synthetases was found to align with a region of Escherichia coli asparagine synthetase A. The alignment was most striking for aspartyl tRNA synthetase, an enzyme with catalytic similarities to asparagine synthetase. To test whether this sequence reflects a conserved function, site-directed mutagenesis was used to replace the codon for Arg298 of asparagine synthetase A, which aligns with an invariant arginine in the Class II aminoacyl tRNA synthetases. The resulting genes were expressed in E. coli, and the gene products were assayed for asparagine synthetase activity in vitro. Every substitution of Arg298, even to a lysine, resulted in a loss of asparagine synthetase activity. Directed random mutagenesis was then used to create a variety of codon changes which resulted in amino acid substitutions within the conserved motif surrounding Arg298. Of the 15 mutant enzymes with amino acid substitutions yielding soluble enzyme, 13 with changes within the conserved region were found to have lost activity. These results are consistent with the possibility that asparagine synthetase A, one of the two unrelated asparagine synthetases in E. coli, evolved from an ancestral aminoacyl tRNA synthetase.  相似文献   

17.
Glutaminyl-tRNA synthetase has been purified by a simple, two-column procedure from an Escherichia coli K12 strain carrying the glnS structural gene on plasmid pBR322. The primary sequence of this enzyme as derived from the DNA sequence (see accompanying paper) has been confirmed. Manual Edman degradation was used to identify the NH2-terminal sequence of the protein. Oligopeptides scattered throughout the primary sequence of glutaminyl-tRNA synthetase were sequenced by the gas chromatographic-mass spectrometric method and matched to the theoretical peptides derived from the translated DNA sequence. The expected carboxyl terminus at position 550 was verified by carboxypeptidase B digestion. The primary sequence of glutaminyl-tRNA synthetase contains no extensive sequence repeats. A search was made for sequence homologies between this enzyme and the few other aminoacyl-tRNA synthetases for which primary sequences are available. A single homologous region is shared by at least three of the synthetases examined here.  相似文献   

18.
Although the physical and kinetic properties of S-adenosylmethionine (AdoMet) synthetases from different sources are quite different, it appears that these enzymes have structurally or antigenically conserved regions as demonstrated by studies with AdoMet synthetase specific antibodies. Polyclonal anti-human lymphocyte AdoMet synthetase crossreacted with enzyme from rat liver (beta isozyme), Escherichia coli and yeast. In addition, polyclonal anti-E. coli enzyme and antibodies to synthetic peptides copying several regions of the yeast enzyme reacted with the human gamma and rat beta isozymes. Antibodies to yeast SAM1 encoded protein residues 6-21, 87-113 and 87-124 inhibited the activity of human lymphocyte AdoMet synthetase, while antibodies to residues 272-287 had no effect on the enzyme activity. Our results suggest that these conserved regions may be important in enzyme activity.  相似文献   

19.
Certain protein-RNA complexes, such as synthetase-tRNA complexes, are essential for cell survival. These complexes are formed with a precise molecular fit along the interface of the reacting partners, and mutational analyses have shown that amino acid or nucleotide substitutions at the interface can be used to disrupt functional or repair non-functional complexes. In contrast, we demonstrate here a feature of a eukaryote system that rescues a disrupted complex without directly re-engineering the interface. The monomeric yeast Saccharomyces cerevisiae glutaminyl-tRNA synthetase, like several other class I eukaryote tRNA synthetases, has an active-site-containing ''body'' that is closely homologous to its Escherichia coli relative, but is tagged at its N-terminus with a novel and dispensable appended domain whose role has been obscure. Because of differences between the yeast and E. coli glutamine tRNAs that presumably perturb the enzyme-tRNA interface, E. coli glutaminyl-tRNA synthetase does not charge yeast tRNA. However, linking the novel appended domain of the yeast to the E. coli enzyme enabled the E. coli protein to function as a yeast enzyme, in vitro and in vivo. The appended domain appears to contribute an RNA interaction that compensates for weak or poor complex formation. In eukaryotes, extra appended domains occur frequently in these proteins. These domains may be essential when there are conditions that would otherwise weaken or disrupt formation of a critical RNA-protein complex. They may also be adapted for other, specialized RNA-related functions in specific instances.  相似文献   

20.
The entire nucleotide sequence of the Bacillus brevis grsB gene encoding the gramicidin S synthetase 2, which activates and condenses the four amino acids proline, valine, ornithine and leucine has been determined. The gene contains an open reading frame of 13,359 bp which encodes a protein of 4453 amino acids with a predicted Mr of 510,287. The gene is located within the gramicidin S biosynthetic operon, also containing the genes grsT and grsA, whose nucleotide sequences have been determined previously. Within the GrsB amino acid sequence four conserved and repeated domains of about 600 amino acids (45-50% identity) have been identified. The four domains are separated by non-homologous sequences of about 500 amino acids. The domains also share a high degree of similarity (20-70%) with eight peptide synthetases of bacterial and fungal origin as well as with conserved sequences of nine other adenylate-forming enzymes of diverse origin. On the basis of sequence homology and functional similarities, we infer that those enzymes share a common evolutionary origin and present a phylogenetic tree for this superfamily of domain-bearing enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号