首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study addresses the mechanism of covalent aggregation of human Cu,Zn-superoxide dismutase (hSOD1WT) induced by bicarbonate (HCO3-)-mediated peroxidase activity. Higher molecular weight species (apparent dimers and trimers) of hSOD1WT were formed from incubation mixtures containing hSOD1WT, H2O2, and HCO3-. HCO3--dependent peroxidase activity and covalent aggregation of hSOD1WT were mimicked by UV photolysis of hSOD1-WT in the presence of a [Co(NH3)5CO3]+ complex that generates the carbonate radical anion (CO3.). Human SOD1WT has but one aromatic residue, a tryptophan residue (Trp-32) on the surface of the protein. Substitution of Trp-32 with phenylalanine produced a mutant (hSOD1W32F) that exhibits HCO3--dependent peroxidase activity similar to wild-type enzyme. However, unlike hSOD1WT, incubations containing hSOD1W32F,H2O2, and HCO3-did not result in covalent aggregation of SOD1. These findings indicate that Trp-32 is crucial for CO3.-induced covalent aggregation of hSOD1WT. Spin-trapping results revealed the formation of the Trp-32 radical from hSOD1WT, but not from hSOD1W32F. Spin traps also inhibited the covalent aggregation of hSOD1WT. Fluorescence experiments revealed that Trp-32 was further oxidized by CO3., forming kynurenine-type products in the presence of oxygen. Molecular oxygen was needed for HCO3-/H2O2-dependent aggregation of hSOD1WT, implicating a role for a Trp-32-dependent peroxidative reaction in the covalent aggregation of hSOD1WT. Taken together, these results indicate that Trp-32 oxidation is crucial for covalent aggregation of hSOD1. Implications of HCO3--dependent SOD1 peroxidase activity in amyotrophic lateral sclerosis disease are discussed.  相似文献   

2.
In this work, we investigated the oxidative modification of histidine residues induced by peroxidase and thiol oxidase activities of bovine copper-zinc superoxide dismutase (Cu-ZnSOD) using NMR and pulse EPR spectroscopy. 1D NMR and 2D-NOESY were used to determine the oxidative damage at the Zn(II) and Cu(II) active sites as well as at distant histidines. Results indicate that during treatment of SOD with hydrogen peroxide (H(2)O(2)) or cysteine in the absence of bicarbonate anion (HCO(3)(-)), both exchangeable and nonexchangeable protons were affected. Both His-44 and His-46 in the Cu(II) active site were oxidized based on the disappearance of NOESY cross-peaks between CH and NH resonances of the imidazole rings. In the Zn(II) site, only His-69, which is closer to His-44, was oxidatively modified. However, addition of HCO(3)(-) protected the active site His residues. Instead, resonances assigned to the His-41 residue, 11 ? away from the Cu(II) site, were completely abolished during both HCO(3)(-)-stimulated peroxidase activity and thiol oxidase activity in the presence of HCO(3)(-) . Additionally, ESEEM/HYSCORE and ENDOR studies of SOD treated with peroxide/Cys in the absence of HCO(3)(-) revealed that hyperfine couplings to the distal and directly coordinated nitrogens of the His-44 and His-46 ligands at the Cu(II) active site were modified. In the presence of HCO(3)(-), these modifications were absent. HCO(3)(-)-mediated, selective oxidative modification of histidines in SOD may be relevant to understanding the molecular mechanism of SOD peroxidase and thiol oxidase activities.  相似文献   

3.
Copper,zinc superoxide dismutase (Cu,Zn-SOD) catalyzes the HCO(3)(-)-dependent oxidation of diverse substrates. The mechanism of these oxidations involves the generation of a strong oxidant, derived from H(2)O(2), at the active site copper. This bound oxidant then oxidizes HCO(3)(-) to a strong and diffusible oxidant, presumably the carbonate anion radical that leaves the active site and then oxidizes the diverse substrates. Cu,Zn-SOD is also subject to inactivation by H(2)O(2). It is now demonstrated that the rates of HCO(3)(-)-dependent oxidations of NADPH and urate exceed the rate of inactivation of the enzyme by approximately 100-fold. Cu,Zn-SOD is also seen to catalyze a HCO(3)(-)-dependent consumption of the H(2)O(2) and that HCO(3)(-) does not protect Cu,Zn-SOD against inactivation by H(2)O(2). A scheme of reactions is offered in explanation of these observations.  相似文献   

4.
A new rhombic EPR signal was recently discovered in the partially reduced type 2 copper-depleted Rhus vernicifera laccase (Reinhammar, B. (1983) J. Inorg. Biochem., in press). The signal originates from one of the type 3 Cu(II) ions that becomes EPR-detectable as a result of the selective reduction of the other copper ion in the exchange-coupled Cu(II)-Cu(II) pair. The 14N and 1H and 63,65Cu electron nuclear double resonance (ENDOR) of this uncoupled Cu(II) now have been collected and represent the first ENDOR measurements of a type 3 copper site. The data indicate that the copper is coordinated by at least three nitrogenous ligands, at least one of which is an imidazole. H/D exchange suggests a nearby H2O or OH-, perhaps as a fourth ligand. A similar EPR signal is seen for CuB of reduced cytochrome c oxidase under turnover conditions. The 14N ENDOR, and, therefore, the structure, of this site corresponds extremely closely to that of the laccase type 3 (Cu(II).  相似文献   

5.
Previously, we showed that oxidation of tryptophan-32 (Trp-32) residue was crucial for H2O2/bicarbonate (HCO3)-dependent covalent aggregation of human Cu,Zn SOD1 (hSOD1). The carbonate anion radical (CO3)-induced oxidation of Trp-32 to kynurenine-type oxidation products was proposed to cause the aggregation of hSOD1. Here we used the matrix-assisted laser desorption ionization–time of flight mass spectroscopy, high-performance liquid chromatography–electrospray ionization mass spectroscopy, and liquid chromatography mass spectroscopy methods to characterize products. Results show that a peptide region (31–36) of hSOD1 containing the Trp-32 residue (VWGSIK) is oxidatively modified to the N-formylkynurenine (NFK)- and kynurenine (Kyn)-containing peptides (V(NFK)GSIK) and (V(Kyn)GSIK) during HCO-dependent peroxidase activity of hSOD1. Also, UV photolysis of a cobalt complex that generates authentic CO3 radical induced a similar product profile from hSOD1. Similar products were obtained using a synthetic peptide with the same amino acid sequence (i.e., VWGSIK). We propose a mechanism involving a tryptophanyl radical for CO3-induced oxidation of Trp-32 residue (VWGSIK) in hSOD1 to V(NFK)GSIK and V(Kyn)GSIK.  相似文献   

6.
In this review, we describe the free radical mechanism of covalent aggregation of human copper, zinc superoxide dismutase (hSOD1). Bicarbonate anion (HCO3-) enhances the covalent aggregation of hSOD1 mediated by the SOD1 peroxidase-dependent formation of carbonate radical anion (CO3*-), a potent and selective oxidant. This species presumably diffuses out the active site of hSOD1 and reacts with tryptophan residue located on the surface of hSOD1. The oxidative degradation of tryptophan to kynurenine and N-formyl kynurenine results in the covalent crosslinking and aggregation of hSOD1. Implications of oxidant-mediated aggregation of hSOD1 in the increased cytotoxicity of motor neurons in amyotrophic lateral sclerosis are discussed.  相似文献   

7.
The interaction of Cu,ZnSOD with H2O2 generates an oxidant at the active site that can then cause either the inactivation of this enzyme or the oxidation of a variety of exogenous substrates. We show that the rate of inactivation, imposed by 10-mM H2O2 at 25 degrees C and pH 7.2, is not influenced by 10-mM HCO3-; whereas the oxidation of 2,2'-azino-bis-[3-ethylbenzothiazoline sulfonate] (ABTS=) is virtually completely dependent upon HCO3-. The reduction of the active site Cu(II) by H2O2, which precedes inactivation of the enzyme, occurred at the same rate in phosphate buffer with or without bicarbonate added. These results indicate that HCO3- does not play a role in facilitating the interaction of H2O2 with the active site copper, but they can be accommodated by the proposal that HCO3- is oxidized to HCO3*, which then diffuses from that site and causes the oxidation of substrates, such as ABTS=, that are too large to traverse the solvent access channel to the Cu(II).  相似文献   

8.
We have reinvestigated the biochemistry of H2O2-induced Cu,Zn-superoxide dismutase (SOD1)-centered radicals, detecting them by immuno-spin trapping. These radicals are involved in H2O2-induced structural and functional damage to SOD1, and their mechanism of generation depends on copper and/or (bi)carbonate (i.e., CO2, CO3(-2), or HCO3-). First, in the absence of DTPA and (bi)carbonate, Cu(II) was partially released and rebound at His, Cys, and Tyr residues in SOD1 with the generation of protein-copper-bound oxidants outside the SOD1 active site by reaction with excess H2O2. These species produced immuno-spin trapping-detectable SOD1-centered radicals associated with H2O2-induced active site ( approximately 5 and approximately 10 kDa fragments) and non-active site (smearing between 3 and 16 kDa) copper-dependent backbone oxidations and subsequent fragmentation of SOD1. Second, in the presence of DTPA, which inhibits H2O2-induced SOD1 non-active site fragmentation, (bi)carbonate scavenged the enzyme-bound oxidant at the SOD1 active site to produce the carbonate radical anion, CO3*-, thus protecting against active site SOD1 fragmentation. CO3*- diffuses and produces side chain oxidations forming DMPO-trappable radical sites outside the enzyme active site. Both mechanisms for generating immuno-spin trapping-detectable SOD1-centered radicals were susceptible to inhibition by cyanide and enhanced at high pH values. In addition, (bi)carbonate enhanced H2O2-induced SOD1 turnover as demonstrated by an enhancement in oxygen evolution and SOD1 inactivation. These results help clarify the free radical chemistry involved in the functional and structural oxidative damage to SOD1 by H2O2 with the intermediacy of copper- and CO3*--mediated oxidations.  相似文献   

9.
The effect of bicarbonate anion (HCO(3)(-)) on the peroxidase activity of copper, zinc superoxide dismutase (SOD1) was investigated using three structurally different probes: 5, 5'-dimethyl-1-pyrroline N-oxide (DMPO), tyrosine, and 2, 2'-azino-bis-[3-ethylbenzothiazoline]-6-sulfonic acid (ABTS). Results indicate that HCO(3)(-) enhanced SOD/H(2)O(2)-dependent (i) hydroxylation of DMPO to DMPO-OH as measured by electron spin resonance, (ii) oxidation and nitration of tyrosine to dityrosine, nitrotyrosine, and nitrodityrosine as measured by high pressure liquid chromatography, and (iii) oxidation of ABTS to the ABTS cation radical as measured by UV-visible spectroscopy. Using oxygen-17-labeled water, it was determined that the oxygen atom present in the DMPO-OH adduct originated from H(2)O and not from H(2)O(2). This result proves that neither free hydroxyl radical nor enzyme-bound hydroxyl radical was involved in the hydroxylation of DMPO. We postulate that HCO(3)(-) enhances SOD1 peroxidase activity via formation of a putative carbonate radical anion. This new and different perspective on HCO(3)(-)-mediated oxidative reactions of SOD1 may help us understand the free radical mechanism of SOD1 and related mutants linked to amyotrophic lateral sclerosis.  相似文献   

10.
A series of mononuclear copper(II) complexes having a 1:1 molar ratio of copper and the planar heterocyclic base like 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) are prepared from a reaction of copper(II) nitrate.trihydrate and the base (L) in ethanol or aqueous ethanol at different temperatures. The complexes [Cu(dpq)(NO(3))(2)] (2), [Cu(dpq)(NO(3))(H(2)O)(2)](NO(3)) (3), [Cu(dpq)(NO(3))(2)(H(2)O)(2)].2H(2)O (4.2H(2)O) and [Cu(dppz)(NO(3))(2)(H(2)O)].H(2)O (5.H(2)O) have been characterized by X-ray crystallography. The crystal structures show the presence of the heterocyclic base in the basal plane. The coordination geometries of the copper(II) centers are axially elongated square-pyramidal (4+1) in 2, 3 and 5, and octahedral (4+2) in 4. The nitrate anion in the coordination sphere displays unidentate and bidentate chelating bonding modes. The axial ligand is either H(2)O or NO(3) in these structures giving a Cu-L(ax) distance of approximately 2.4 A. The one-electron paramagnetic complexes (mu approximately 1.8 mu(B)) exhibit axial EPR spectra in DMF glass at 77 K giving g(parallel)>g( perpendicular ) with an A(parallel) value of approximately 170G indicating a [d(x)2(-y)2](1) ground state. The complexes are redox active and display a quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.0 V vs. SCE giving an order of the E(1/2) values as 5(dppz)>2-4 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). The complexes bind to calf thymus DNA giving an order 5 (dppz)>2 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). An effect of the extended planar ring in dpq and dppz is observed in the DNA binding. The complexes show nuclease activity with pUC19 supercoiled DNA in DMF/Tris-HCl buffer containing NaCl in presence of mercaptopropanoic acid as a reducing agent. The extent of cleavage follows the order: [Cu(phen)(2)(H(2)O)](ClO(4))(2)>5>2 approximately 3 approximately 4>1. The bis-phen complex is a better cleaver of SC DNA than 1-5 having mono-heterocyclic base. Mechanistic investigations using distamycin reveal minor groove biding for the phen, dpq complexes, and a major groove binding for the dppz complex 5. The cleavage reactions are found to be inhibited in the presence of hydroxyl radical scavenger DMSO and the reactions are proposed to proceed via sugar hydrogen abstraction pathway. The ancillary ligand is found to have less effect in DNA binding but are of importance in DNA cleavage reactions.  相似文献   

11.
The complexes [Cu(II)(phen)(L-Pro)(H2O)]+ ClO4(-) (1; phen = 1,10-phenanthroline) and [Cu(II)(bipy)(L-Pro)(H2O)]+ ClO4(-) (2; bipy = 2,2'-bipyridine) were synthesized and characterized by IR, magnetic susceptibility, UV/VIS, EPR, ESI-MS, elemental analysis, and theoretical calculations. The metal center was found in a square-pyramidal geometry. UV/VIS, thermal-denaturation, and fluorescence-spectroscopic studies were conducted to assess the interaction of the complexes with CT-DNA. An intercalative mode of binding was found, with intrinsic binding constants (Kb) of 3.86x10(3) and 4.6x10(3) M(-1) and Stern-Volmer quenching constants (K) of 0.15 and 0.11 for 1 and 2, respectively. Interestingly, none of the Cu(II) complexes was able to cleave pUC-19 DNA, which is attributed to the absence of a Pro amide H-atom and inhibition of the formation of an OH radical from the axially coordinated H2O molecule.  相似文献   

12.
Hyperfine interactions (1H and 14N) with the paramagnetic Cu(II)-site obtained from frozen solutions of human and bovine erythrocyte superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) as well as from their derivatives produced by anion binding (N3-, CN-) and by depletion of the Zn(II) site were studied using electron nuclear double resonance (ENDOR) spectroscopy at about 15 K. Both interactions were found to be identical in human and bovine erythrocyte superoxide dismutase. In all compounds, an anisotropic, exchangeable 1H interaction with a nearly constant coupling value (approximately 3 MHz along g perpendicular ) was observed which is due to either histidine NH- or water protons. Other proton interactions were tentatively assigned to H beta 1 of His-44, H delta 2 of His-46 and to H beta 2 of His-44. Depletion of the Zn(II) site did not alter appreciably the pattern of the proton interactions. The 14N couplings of the native specimen indicated equivalent coordination, whereas Zn(II) depletion and CN- addition were found to produce either some or drastic inequivalences, respectively. For N3- addition to either the native or the Zn(II)-depleted sample only minor effects on the respective 14N coupling pattern were observed.  相似文献   

13.
The new homodinuclear complexes, [Cu(2)(II)(HLdtb)(mu-OCH(3))](ClO(4))(2) (1) and [Cu(2)(II)(Ldtb)(mu-OCH(3))](BPh(4)) (2), with the unsymmetrical N(5)O(2) donor ligand (H(2)Ldtb) - {2-[N,N-Bis(2-pyridylmethyl)aminomethyl]-6-[N',N'-(3,5-di-tert-butylbenzyl-2-hydroxy)(2-pyridylmethyl)]aminomethyl}-4-methylphenol have been synthesized and characterized in the solid state by X-ray crystallography.In both cases the structure reveals that the complexes have a common {Cu(II)(mu-phenoxo)(mu-OCH(3))Cu(II)} structural unit.Magnetic susceptibility studies of 1 and 2 reveal J values of -38.3 cm(-1) and -2.02 cm(-1), respectively, and that the degree of antiferromagnetic coupling is strongly dependent on the coordination geometries of the copper centers within the dinuclear {Cu(II)(mu-OCH(3))(mu-phenolate)Cu(II)} structural unit.Solution studies in dichloromethane, using UV-Visible spectroscopy and electrochemistry, indicate that under these experimental conditions the first coordination spheres of the Cu(II) centers are maintained as observed in the solid state structures, and that both forms can be brought into equilibrium ([Cu(2)(HLdtb)(mu-OCH(3))](2+)=[Cu(2)(Ldtb)(mu-OCH(3))](+)+H(+)) by adjusting the pH with Et(3)N (Ldtb(2-) is the deprotonated form of the ligand).On the other hand, potentiometric titration studies of 1 in an ethanol/water mixture (70:30 V/V; I=0.1M KCl) show three titrable protons, indicating the dissociation of the bridging CH(3)O(-) group.The catecholase activity of 1 and 2 in methanol/water buffer (30:1 V/V) demonstrates that the deprotonated form is the active species in the oxidation of 3,5-di-tert-butylcatechol and that the reaction follows Michaelis-Menten behavior with k(cat)=5.33 x 10(-3)s(-1) and K(M)=3.96 x 10(-3)M. Interestingly, 2 can be electrochemically oxidized with E(1/2)=0.27 V vs.Fc(+)/Fc (Fc(+)/Fc is the redox pair ferrocinium/ferrocene), a redox potential which is believed to be related to the formation of a phenoxyl radical.Since these complexes are redox active species, we analyzed their activity toward the nucleic acid DNA, a macromolecule prone to oxidative damage.Interestingly these complexes promoted DNA cleavage following an oxygen dependent pathway.  相似文献   

14.
15.
A new octanuclear copper(II) complex has been synthesized and structurally characterized by X-ray crystallography: [Cu(8)(HL)(4)(OH)(4)(H(2)O)(2)(ClO(4))(2)].(ClO(4))(2).2H(2)O (1) (H(3)L=2,6-bis(hydroxyethyliminoethyl)-4-methyl phenol). The complex is formed by the linkage of two terminal bimetallic cationic units and a tetranuclear mu(3)-hydroxo bridged dicubane core by a very short intramolecular hydrogen bond (O-H...O, 1.48(3)A and the angle 175 degrees). The coordination sphere of the terminal copper atoms is square pyramidal, the apical positions being occupied by water and a perchlorate ion. Complex 1 self-assembles to form a new type of water-perchlorate helical network [(H(2)O)(2)(ClO(4))](infinity) involving oxygen atoms of coordinated perchlorate ion and the two lattice water molecules through hydrogen-bonding interaction. The variable temperature-dependent susceptibility measurement (2-300K) of 1 reveals a strong antiferromagnetic coupling, J(1)=-220cm(-1) and J(2)=-98cm(-1) (J(1) and J(2) representing the exchange constant within [Cu(2+)](4) and [Cu(2+)](2) units, respectively). The complex binds to double-stranded supercoiled plasmid DNA giving a K(app) value of 1.2x10(7)M(-1) and displays efficient oxidative cleavage of supercoiled DNA in the presence of H(2)O(2) following a hydroxyl radical pathway.  相似文献   

16.
The Cu,Zn SOD catalyzes the bicarbonate-dependent oxidation of a wide range of substrates by H2O2. A mechanism in accord with this activity has been described. It involves the generation of a strong oxidant (Cu(I)O, Cu(II)OH, or Cu(III)) by reaction of the active site Cu with H2O2, followed by oxidation of bicarbonate to CO3-* that in turn diffuses from the active site to oxidize the various substrates in free solution. Recently, an alternative mechanism, entailing firmly bound HCO3- and CO3-*, has been proposed [J. Biol. Chem. 278 (2003) 21032-21039]. We present data supporting the diffusible CO3-* and discuss the properties of this system that can be accommodated in this way and that preclude bound intermediates.  相似文献   

17.
Augmentation, by CO(2)/HCO(3)(-), of Co(II)-catalyzed peroxidations was explored to clarify whether the rate enhancement was due to CO(2) or to HCO(3)(-). The rate of oxidation of NADH by Co(II) plus H(2)O(2), in Tris or phosphate, was markedly enhanced by CO(2)/HCO(3)(-). Phosphate was seen to inhibit the Co(II)-catalyzed peroxidation, probably due to its sequestration of the Co(II). When CO(2) was used, there was an initial burst of NADH oxidation followed by a slower linear rate. The presence of carbonic anhydrase eliminated this initial burst; establishing that CO(2) rather than HCO(3)(-) was the species responsible for the observed rate enhancements. Both kinetic and spectral data indicated that Co(II) was converted by H(2)O(2) into a less active form from which Co(II) could be regenerated. This less active form absorbed in both the UV and visible regions, and is assumed to be a peroxy bridged binuclear complex. The rate of formation of this absorbing form was increased by HCO(3)(-)/CO(2). A minimal mechanism consistent with these observations is proposed.  相似文献   

18.
Three new ternary peptide-Cu(II)-1,10-phenanthroline (phen) complexes, [Cu(L-ala-gly)(phen)].3.5H(2)O 1, [Cu(L-val-gly)(phen)] 2 and [Cu(gly-L-trp)(phen)].2H(2)O 3, have been prepared and structurally characterised. These compounds exist as distorted square pyramidal complexes with the five co-ordination sites occupied by the tridentate peptide dianion and the two heterocyclic nitrogens of the phenanthroline ligand. The bulk of the lateral chain in the peptide moiety determines the relative disposition of the phen ligand. Thus, in [Cu(L-val-gly)(phen)] 2, the phenanthroline plane is deviated towards the opposite side of the isopropyl group of the L-valine moiety. On the other hand, in [Cu(gly-L-trp)(phen)].2H(2)O 3 the absence of stacking interactions between phen and indole rings and the presence of an intramolecular CH...pi interaction should be pointed out. These complexes exhibit significant differences in their nuclease activity which depends on the nature of the peptidic moiety, the complex [Cu(gly-L-trp) (phen)].2H(2)O 3 being the most active.  相似文献   

19.
Two pseudopolymorphs, solvates, of [Cu(2)(II)(niflumate)(4)(H(2)O)(2)] of unknown structure were obtained following solution of [Cu(2)(II)(niflumate)(4)(H(2)O)(2)] in N,N-dimethylacetamide (DMA) or N,N-dimethylformamide (DMF). Low-temperature crystal structures obtained for these solvates revealed that they were ternary aqua DMA and DMF solvates: [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMA and [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMF. Intermolecular hydrogen bonding interactions account for the formation of these stable DMA and DMF solvates. These pseudopolymorphs contain a centrosymmetric binuclear center with Cu-Cu bond distances ranging from 2.6439(7) to 2.6452(9) A; the coordination sphere of Cu(II) is characterized by one long Cu-O (water) bond length of 2.128(3)-2.135(3) A and four short Cu-O (carboxylate) bonds of 1.949(3)-1.977(3) A. Crystal parameters for the DMA pseudopolymorph: a=10.372(1), b=19.625(2), c=17.967(2) A, beta=97.40(1) degrees , V=3626.8(6) A(3); monoclinic system; space group: P2(1)/a and for the DMF pseudopolymorph: a=10.125(2), b=18.647(3), c=19.616(4) A, alpha=74.38(2)(o), beta=88.18(2)(o), gamma=79.28(2)(o), V=3504(1) A(3); triclinic system; space group: P1. EPR spectra of these solids are identical and show strong antiferromagnetic coupling between the copper atoms, similar to the spectrum obtained for [Cu(2)(II)(niflumate)(4)(DMSO)(2)]. The [Cu(2)(II)(niflumate)(4)(H(2)O)(2)], [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMA, [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMF, [Cu(2)(II)(niflumate)(4)(DMF)(2)], and[Cu(2)(II)(niflumate)(4)(DMSO)(2)] evidenced protection against maximal electroshock-induced seizures and Psychomotor seizures at various times after treatment, consistent with the well known antiinflammatory activities of Cu chelates, but failed to protect against Metrazol-induced seizures while evidencing some Rotorod Toxicity consistent with a mechanism of action involving sedative activity.  相似文献   

20.
C K Tu  D N Silverman 《Biochemistry》1985,24(21):5881-5887
We have measured the catalysis by Co(II)-substituted bovine carbonic anhydrase II from red cells of the exchange of 18O between CO2 and H2O using membrane-inlet mass spectrometry. We chose Co(II)-substituted carbonic anhydrase II because the apparent equilibrium dissociation constant of HCO3- and enzyme at pH 7.4, KHCO3-eff approximately equal to 55 mM, was within a practicable range of substrate concentrations for the 18O method. For the native, zinc-containing enzyme KHCO3-eff is close to 500 mM at this pH. The rate constant for the release from the active site of water bearing substrate oxygen kH2O was dependent on the fraction of enzyme that was free, not bound by substrate HCO3- or anions. The pH dependence of kH2O in the pH range 6.0-9.0 can be explained entirely by a rate-limiting, intramolecular proton transfer between cobalt-bound hydroxide and a nearby group, probably His-64. The rate constant for this proton transfer was found to be 7 X 10(5) S-1 for the Co(II)-substituted enzyme and 2 X 10(6) S-1 for the native enzyme. These results are applied to models derived from proton-relaxation enhancement of water exchanging from the inner coordination shell of the cobalt in carbonic anhydrase. The anions iodide, cyanate, and thiocyanate inhibited catalysis of 18O exchange by Co(II)-substituted carbonic anhydrase II in a manner competitive with total substrate (CO2 and HCO3-) at chemical equilibrium and pH 7.4. These results are discussed in terms of observed steady-state inhibition patterns and suggest that there is no significant contribution of a ternary complex between substrate, inhibitor, and enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号