首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Given the pervasiveness of gene sharing in evolution and the extent of homology across the tree of life, why is everything not homologous with everything else? The continuity and overlapping genetic contributions to diverse traits across lineages seem to imply that no discrete determination of homology is possible. Although some argue that the widespread overlap in parts and processes should be acknowledged as “partial” homology, this threatens a broad base of presumed comparative morphological knowledge accepted by most biologists. Following a long scientific tradition, we advocate a strategy of “theoretical articulation” that introduces further distinctions to existing concepts to produce increased contrastive resolution among the labels used to represent biological phenomena. We pursue this strategy by drawing on successful patterns of reasoning from serial homology at the level of gene sequences to generate an enriched characterization of serial homology as a hierarchical, phylogenetic concept. Specifically, we propose that the concept of serial homology should be applied primarily to repeated but developmentally individualized body parts, such as cell types, differentiated body segments, or epidermal appendages. For these characters, a phylogenetic history can be reconstructed, similar to families of paralogous genes, endowing the notion of serial homology with a hierarchical, phylogenetic interpretation. On this basis, we propose a five-fold theoretical classification that permits a more fine-grained mapping of diverse trait-types. This facilitates answering the question of why everything is not homologous with everything else, as well as how novelty is possible given that any new character possesses evolutionary precursors. We illustrate the fecundity of our account by reference to debates over insect wing serial homologs and vertebrate paired appendages.  相似文献   

2.
This paper is a critical comment on a recent article by Lieberman. 1 We question his opinion that DNA is a better data source for phylogenetic reconstructions than bone and discuss his “problems and potential solutions” regarding the homology concept. We conclude that phylogenetic systematics requires a phylogenetic homology concept, and that Lieberman's “solutions,” though useful terms, should not be designated as homology.  相似文献   

3.
Homocracy, a term referring to shared regulatory gene expression patterns between organs in different animals, was introduced recently in order to prevent inappropriate inference of organ homology based on gene expression data. Non-homologous structures expressing homologous genes, and homologous structures expressing non-homologous genes illustrate that gene expression data is not sufficient on its own to identify morphological homology. However, gene expression data might be useful in testing hypotheses of organ homology, because parsimony can be applied on changes in the relation between expression of orthologous regulatory genes and the formation of homologous organs. A method of testing organ homology hypotheses with respect to change in regulatory gene expression required within a particular phylogenetic context is presented.Edited by R.J. Sommer  相似文献   

4.
Rui Diogo 《Journal of morphology》2020,281(12):1628-1633
I am very thankful to Kuznetsov for his comments on our recent paper about serial structures published in this journal. I hope this is just the beginning of a much wider, and holistic, discussion on the evolution of serial homologous structures, and of so-called “serial structures” in general, whether they are truly serial homologs or the secondary result of homoplasy. Strangely, Kuznetsov seems to have missed the main point of our paper, what is particularly puzzling as this point is clearly made in the very title of our paper. For instance, he states that “Siomava et al. claim that the serial homologues are false because they are ancestrally anisomeric (dissimilar)' and that” Siomava et al., (Siomava et al., Journal of Morphology, 2020, 281, 1110–1132) expected that if serial homology was true, then the serial homologs would be identical at the start and then only diverge. “ However, our paper clearly did not state this. Instead, we stated that (a) serial homology is a real phenomenon, and (b) ancestral dissimilarity is actually likely the norm, and not the exception, within serial homology. In particular, our paper showed that, as clearly stated in its title and abstract, within the evolution of serial homologues these structures “many times display trends toward less similarity while in many others display trends toward more similarity, that is, one cannot say that there is a clear, overall trend to anisomerism.” Serial homology is therefore a genuine and much widespread phenomenon within the evolution of life in this planet. It is clearly one of the most important issues—and paradoxically one of the less understood, precisely because of the a priori acceptance of long-standing assumptions that have never been empirically tested, some of them repeated in Kuznetsov's paper—within macroevolution and comparative anatomy.  相似文献   

5.
Different approaches to circumscribe staminodial structures in the angiosperms are reviewed. The need for a morphological distinction between “true staminodes” (derived from stamens or homologous to stamens) and “pseudostaminodes” (nonhomologous to stamens) is emphasized. In phylogenetic studies the term “staminode” is often used uncritically, without knowledge of the true homology of these structures. Staminodes are either whole organs (outer tiers or whorls, namely petals, intermediate tiers, or organs within a tier), or partial organs. This article aims to discuss the shortcomings of the past and current approach of staminodes and proposes definitions of staminode types for use as characters in phylogenetic analyses. Staminodial structures should be classified according to their position and function in the flower. Both aspects are intricately linked and make the identification of staminodes sometimes problematic. Shifts in time (heterochrony) and space (heterotopy or homeosis) make that a regressing organ either aborts completely or becomes remodeled into something new. Petals are included in the definition of staminodes as they combine function and heterotopy. A hierarchical ordering of staminodial types is given and discussed. Three interdependent but possibly complementary functions are attached to the occurrence of staminodes: an attractive, nutritional, and structural function. The importance of staminodes for the evolution of the androecium and flower is demonstrated. The difficulty in unmasking pseudostaminodes, comprising receptacular disks, is demonstrated. The value and shortcomings of molecular-based interpretations of staminodes are discussed. It is shown that the decision to recognize a staminode from receptacular emergences often relies on unstable grounds and remains largely dependent on the acceptance of a given phylogenetic background.  相似文献   

6.
Following Wagner's (1989) distinction between historical and biological concepts of homology, we analyze homology problems of metameric animals in the light of a biological concept. In identifying homology, we refer to the common informational background which two structures share. Therefore, homology relationships are matters of degree; they are ‘perfect’ only when there is full identity of informational background between the structures under comparison. Homonomy (serial homology) is not fundamentally different from other kinds of homology. We regard the differences between epimorphically and anamorphically developed segments as minor; therefore, the two kinds of segments are largely homologous. The morphogenetic processes giving rise to segmental structures are regarded as not necessarily hierarchical. We contrast the phylogenetic pattern of hierarchically nested homologies with a largely non-hierarchical pattern of homologous structures within the individual organism. This topological difference adds to heterochrony in generating the widespread mismatch of ontogeny and phylogeny.  相似文献   

7.
Analyzing morphological characters in a phylogenetic context comprises two steps, character analysis and cladistic analysis, which are equivalent to two independent tests for hypotheses on homology. The concept of homology concerns comparable parts of the same or different organisms if their correspondences are the consequence of the same genetic or epigenetic information, and consequently of the same origin. The concept of homology is more inclusive than the character concept. Characters are seen as parts of transformation series. In the first step of morphological character analyses correspondences and non-correspondences between two characters are analyzed. A range of different examination methods and accurate study contribute to the severity of test. The hypothesis that two characters are homologous is corroborated if the correspondences outweigh the non-correspondences because the non-correspondences contradict the homology hypothesis whereas the correspondences contradict the analogy hypothesis. Complex characters possess a higher empirical content than less complex characters because they are more severely testable. The cladistic analysis tests characters against other characters which have all passed the first test. Characters which are congruent with the most parsimonious topology are further corroborated; incongruent characters are not seen as ‘falsified’ but as not further corroborated and subject to re-analysis. To test both homologies and topologies repeatedly is consistent with Popperian testability, and it is in such cycles of research that hypotheses will be critically re-evaluated.  相似文献   

8.
9.
Transformation Series as an Ideographic Character Concept   总被引:7,自引:0,他引:7  
An ideographic concept of character is indispensable to phylogenetic inference. Hennig proposed that characters be conceptualized as “transformation series”, a proposal that is firmly grounded in evolutionary theory and consistent with the method of inferring transformation events as evidence of phylogenetic propinquity. Nevertheless, that concept is usually overlooked or rejected in favor of others based on similarity. Here we explicate Hennig's definition of character as an ideographic concept in the science of phylogenetic systematics. As transformation series, characters are historical individuals akin to species and clades. As such, the related concept of homology refers to a historical identity relation and is not equivalent to or synonymous with synapomorphy. The distinction between primary and secondary homology is dismissed on the grounds that it conflates the concept of homology with the discovery operations used to detect instances of that concept. Although concern for character dependence is generally valid, it is often misplaced, focusing on functional or developmental correlation (both of which are irrelevant in phylogenetic systematics but may be valid in other fields) instead of the historical/transformational independence relevant to phylogenetic inference. As an ideographic science concerned with concrete objects and events (i.e. individuals), intensionally and extensionally defined properties are inconsistent with the individuation of characters for phylogenetic analysis, the utility of properties being limited to communicating results and facilitating future rounds of testing.  相似文献   

10.
Giant morphological data matrices are increasingly common in cladistic analyses of vertebrate phylogeny, reporting numbers of characters never seen or expected before. However, the concern for size is usually not followed by an equivalent, if any, concern for character construction/selection criteria. Therefore, the question of whether quantity parallels quality for such influential works remains open. Here, we provide the largest compilation known to us of character construction methods and criteria, as derived from previous studies, and from our own de novo conceptualizations. Problematic character constructions inhibit the capacity of phylogenetic analyses to recover meaningful homology hypotheses and thus accurate clade structures. Upon a revision of two of the currently largest morphological datasets used to test squamate phylogeny, more than one‐third of the almost 1000 characters analysed were classified within at least one of our categories of “types” of characters that should be avoided in cladistic investigations. These characters were removed or recoded, and the data matrices re‐analysed, resulting in substantial changes in the sister group relationships for squamates, as compared to the original studies. Our results urge caution against certain types of character choices and constructions, also providing a methodological basis upon which problematic characters might be avoided.  相似文献   

11.
The problem of homology has been a consistent source of controversy at the heart of systematic biology, as has the step of morphological character analysis in phylogenetics. Based on a clear epistemic framework and a characterization of “characters” as diagnostic evidence units for the recognition of not directly identifiable entities, I discuss the ontological definition and empirical recognition criteria of phylogenetic, developmental and comparative homology, and how these three accounts of homology each contribute to an understanding of the overall phenomenon of homology. I argue that phylogenetic homologies are individuals or historical kinds that require comparative homology for identification. Developmental homologies are natural kinds that ultimately rest on phylogenetic homologies and also require comparative homology for identification. Comparative homologies on the other hand are anatomical structural kinds that are directly identifiable. I discuss pre‐Darwinian comparative homology concepts and their problem of invoking non‐material forces and involving the a priori assumption of a stable positional reference system. Based on Young's concept of comparative homology, I suggest a procedure for recognizing comparative homologues that lacks these problems and that utilizes a semantic framework. This formal conceptual framework provides the much needed semantic transparency and computer‐parsability for documenting, communicating and analysing similarity propositions. It provides an essential methodological framework for generalizing over individual organisms and identifying and demarcating anatomical structural kinds, and it provides the missing link to the logical chain of identifying phylogenetic homology. The approach substantially increases the analytical accessibility of comparative research and thus represents an important contribution to the theoretical and methodological foundation of morphology and comparative biology.  相似文献   

12.
It has long been assumed that serial homologues are ancestrally similar—polysomerism resulting from a “duplication” or “repetition” of forms—and then often diverge—anisomerism, for example, as they become adapted to perform different tasks as is the case with the forelimb and hind limbs of humans. However, such an assumption, with crucial implications for comparative, evolutionary, and developmental biology, and for evolutionary developmental biology, has in general not really been tested by a broad analysis of the available empirical data. Perhaps not surprisingly, more recent anatomical comparisons, as well as molecular knowledge of how, for example, serial appendicular structures are patterned along with different anteroposterior regions of the body axis of bilateral animals, and how “homologous” patterning domains do not necessarily mark “homologous” morphological domains, are putting in question this paradigm. In fact, apart from showing that many so-called “serial homologues” might not be similar at all, recent works have shown that in at least some cases some “serial” structures are indeed more similar to each other in derived taxa than in phylogenetically more ancestral ones, as pointed out by authors such as Owen. In this article, we are taking a step back to question whether such assumptions are actually correct at all, in the first place. In particular, we review other cases of so-called “serial homologues” such as insect wings, arthropod walking appendages, Dipteran thoracic bristles, and the vertebrae, ribs, teeth, myomeres, feathers, and hairs of chordate animals. We show that: (a) there are almost never cases of true ancestral similarity; (b) in evolution, such structures—for example, vertebra—and/or their subparts—for example, “transverse processes”—many times display trends toward less similarity while in many others display trends toward more similarity, that is, one cannot say that there is a clear, overall trend to anisomerism.  相似文献   

13.
On homology     
The currently most widely used definitions of homology, which concentrate exclusively on what I call phylogenetic homology, involve comparisons between taxa. Although they share important conceptual relationships with phylogenetic homology and their role in evolutionary biology is significant, serial and other forms of iterative homology have been, by comparison, overlooked. There is need for a more inclusive definition of homology. I propose that the basis of homology in the broad sense is the sharing of pathways of development, which are controlled by genealogically-related genes. Using this definition, one can construct hierarchies of homology, and recognize different degrees or strengths of homology. Because different aspects of structures are controlled by distinct developmental programs, it is sometimes necessary to speak of homologies of different attributes of specific structures, rather than to homologize the structures per se. For good biological reasons, parallelism may be difficult to distinguish from homology, and one must in practice be willing to tolerate some ambiguity between them. The formulation I present leads to some unorthodox conclusions about homology in mammalian dentitions and homology between the fore-and hindlimbs of tetrapods.  相似文献   

14.
In systematic biology homology hypotheses are typically based on points of similarity and tested using congruence, of which the two stages have come to be distinguished as “primary” versus “secondary” homology. Primary homology is often regarded as prior to logical test, being a kind of background assumption or prior knowledge. Similarity can, however, be tested by more detailed studies that corroborate or weaken previous homology hypotheses before the test of congruence is applied. Indeed testing similarity is the only way to test the homology of characters, as congruence only tests their states. Traditional homology criteria include topology, special similarity, function, ontogeny and step‐counting (for example, transformation in one step versus two via loss and gain). Here we present a method to compare quantitatively the ability of such criteria, and competing homology schema, to explain morphological observations. We apply the method to a classic and difficult problem in the homology of male spider genital sclerites. For this test case topology performed better than special similarity or function. Primary homologies founded on topology resulted in hypotheses that were globally more parsimonious than those based on other criteria, and therefore yielded a more coherent and congruent nomenclature of palpal sclerites in theridiid spiders than prior attempts. Finally, we question whether primary homology should be insulated as “prior knowledge” from the usual issues and demands that quantitative phylogenetic analyses pose, such as weighting and global versus local optima. © The Willi Hennig Society 2007.  相似文献   

15.
A fundamental riddle of evolutionary developmental biology is the conservation of adult morphological patterns (Hall, 1992). Conservative patterns are either called body plans if they concern overall body design, or homologues if they concern parts of the body (Riedl, 1978; Roth, 1982; Sattler, 1984; Van Valen, 1982; Wagner, 1989a, 1989b). An adult pattern is considered conservative if it remains unchanged in spite of changes in function, as indicated by the original definition of homology by Owen, as a similarity of organs regardless of form and function (Owen, 1848). Conservation of anatomical features despite different adaptive pressures is naturally explained by developmental constraints (Wagner, 1986). However, this approach to explain the biological basis of homology is plagued by the fact that developmental pathways are often more variable than the characters that they produce (see Tab. 1) (Hall, 1992; Roth, 1988, 1991; Spemann, 1915; Wagner, 1989b). This is also true for any other application of the concept of developmental constraints. The widely held opinion that early stages of development are conservative because any early perturbation is likely to interfere with later development, is far from absolute, since a vast amount of data in comparative developmental biology speaks to developmental variation (see e.g. the examples in Tab. 1). The question then is, how can developmental constraints on adult variation be reconciled with the fact of developmental variation?  相似文献   

16.
Developmental biology and evolutionary studies have merged into evolutionary developmental biology (“evo-devo”). This synthesis already influenced and still continues to change the conceptual framework of structural biology. One of the cornerstones of structural biology is the concept of homology. But the search for homology (“sameness”) of biological structures depends on our favourite perspectives (axioms, paradigms). Five levels of homology (“sameness”) can be identified in the literature, although they overlap to some degree: (i) serial homology (homonomy) within modular organisms, (ii) historical homology (synapomorphy), which is taken as the only acceptable homology by many biologists, (iii) underlying homology (i.e., parallelism) in closely related taxa, (iv) deep evolutionary homology due to the “same” master genes in distantly related phyla, and (v) molecular homology exclusively at gene level. The following essay gives emphasis on the heuristic advantages of seemingly opposing perspectives in structural biology, with examples mainly from comparative plant morphology. The organization of the plant body in the majority of angiosperms led to the recognition of the classical root–shoot model. In some lineages bauplan rules were transcended during evolution and development. This resulted in morphological misfits such as the Podostemaceae, peculiar eudicots adapted to submerged river rocks. Their transformed “roots” and “shoots” fit only to a limited degree into the classical model which is based on either–or thinking. It has to be widened into a continuum model by taking over elements of fuzzy logic and fractal geometry to accommodate for lineages such as the Podostemaceae.  相似文献   

17.
Patterns of gene expression: homology or homocracy?   总被引:4,自引:4,他引:0  
Numerous papers over the years have stated that the original meaning of the term homology is historical and morphological and denotes organs/structures in two or more species derived from the same structure in their latest common ancestor. However, several more recent papers have extended the use of the term to cover organs/structures which are organised through the expression of homologous genes. This usage has created an ambiguity about the meaning of the term, and we propose to remove this by proposing a new term, homocracy, for organs/structures which are organised through the expression of identical patterning genes. We want to emphasise that the terms homologous and homocratic are not mutually exclusive. Many homologous structures are in all probability homocratic, whereas only a small number of homocratic structures are homologous.  相似文献   

18.
Abstract. The female atrial system of members of the Polycystididae has been studied at the light microscopical level and compared among the constituent taxa. Based on the criteria of position and conjunction, hypotheses of homology are put forward and compared with the assessments of homology found in earlier literature. Contradictory terminology is synonymized and adapted to fit new findings that recognize homology among structures in different taxa. Based on differences in position and structure, 2 types of female duct are recognized: female duct type I and female duct type II. The term “female bursa” is restricted to a sperm resorbing organ at the proximal end of the female duct type I and/or at the end of a common oviduct. Some species have bundles of glands at the place where the oviduct(s) enter the female duct type I, which are considered homologous among these species. Different types of seminal receptacles are recognized. The term “insemination duct” is restricted to the ducts which in some species, in addition to the oviducts, connect the ovaries with the female duct type I. A single muscular duct, the common oviduct, connects the joined oviducts with the female duct type I in species of Duplacrorhynchus and is considered homologous with the similar duct present in some other species. A uterus is always present, entering the common genital atrium through its frontal wall, or entering a female duct type II. This morphological review of the female atrial system reveals a mosaic distribution of characters if applied to previous phylogenies that are based primarily on the male reproductive system.  相似文献   

19.
20.
According to the classical model, the “shoot” consists only of the categories “caulome” (“stem” sensu lato) and “phyllome” (“leaf” sensu lato), (and “root” in cases of “adventitious” root formation). If lateral shoots are present, their position is axillary. Consequently, caulome as well as phyllome are inserted on the caulome and only on the caulome. This classical model of the shoot has two disadvantages of great consequence: (1) Intermediate organs cannot be accepted as such, but have to be interpreted (i.e. categorized) as either caulome or phyllome (or root) by distortion of the actual similarity. (2) Certain positional changes of organs cannot be accepted as such, but have to be “explained” by congenital fusion. The new conception of the shoot will have the advantages of the classical model but not its disadvantages. Hence, the shoot may consist of the following parts: (main and lateral) shoot, caulome, phyllome, root, emergence, and structures intermediate between (i.e. partially homologous to) any of the preceding. Thus, the five categories of the classical model, namely “shoot”, “caulome”, “phyllome”, “root” and “emergence” are no longer mutually exclusive; they may merge into each other due to an actual or potential continuum. Intermediate organs are therefore accepted as such; for example, an organ may be characterized as an intermediate form between a caulome and a phyllome. Besides intermediate forms, all changes in position are accepted as such. Hence, the following positional relations are possible: caulome and phyllome may be inserted on the caulome, caulome and phyllome may be inserted on the phyllome; roots may be inserted on caulome or phyllome; intermediate forms may be inserted on the caulome, phyllome, or other intermediate forms. Consequences of the new conception for morphological research are pointed out, especially for homologization, evolutionary considerations, and the direction in which research progresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号