首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition, structure and above-ground biomass production of floodplain- and fen-vegetation of the Biebrza valley (N.E. Poland) are strongly correlated with water flow characteristics and water chemistry. Groundwater flow and flooding are the major conditioning factors for the vegetation in the valley.The highly productive vegetation is restricted to the dynamic floodplain where it receives nutrient-rich river water during spring floods. The non-flooded parts of the valley contain rich fen and transitional fen vegetation that have a lower biomass production. The rich fen is fed by calcareous and phosphate-poor groundwater coming from the moraines. In the transitional fen, where rainwater infiltrates, phosphate availability is large.Annual nutrient accumulation in the above-ground biomass of the floodplains is estimated to be about 8–9 § 103 kg/km2 for N and K and 1 § 103 kg/km2 for P. For the less-productive fens these figures are 60 to 70% lower. The total annual nutrient accumulation by vegetation of both floodplains and fens for the entire Biebrza valley is estimated to be about 5600 × 103 kg N, 560 × 103 kg P and 4500 × 103 kg K. This is high compared to the loading rates in the river near to where the Biebrza River discharges into the Narew River (N-, P- and K-loading rates are c. 900, 200 and 3000 × 103 kg/y, respectively). This implies that floodplain and fen vegetation are important sinks for nutrients, especially for N and P.This paper was presented at the INTECOL IV International Wetlands Conference in Columbus, Ohio, 1992, as part of a session organized by Prof. S. E. Jørgensen and sponsored by the International Lake Environment Committee.Corresponding Editor: J. Kvt  相似文献   

2.
The understanding of succession from rich fen to poorer fen types requires knowledge of changes in hydrology, water composition, peat chemistry and peat accumulation in the successional process. Water flow patterns, water levels and water chemistry, mineralisation rates and nutrient concentrations in above-ground vegetation were studied along a extreme-rich fen-moderate-rich fen gradient at Biebrza (Poland). The extreme-rich fen was a temporary groundwater discharge area, while in the moderate-rich fen groundwater flows laterally towards the river. The moderate-rich fen has a rainwater lens in spring and significant lower concentrations of calcium and higher concentrations of phosphate in the surface water. Mineralisation rates for N, P and K were higher in the moderate-rich fen. Phosphorus concentrations in plant material of the moderate-rich fen were higher than in the extreme-rich fen, but concentrations of N and K in plant material did not differ between both fen types. Water level dynamics and macro-remains of superficial peat deposits were similar in both fen types.We concluded that the differences observed in the moderate-rich and the extreme-rich fens were caused by subtile differences in the proportion of water sources at the peat surface (rainwater and calcareous groundwater, respectively). Development of an extreme-rich fen into a moderate-rich fen was ascribed to recent changes in river hydrology possibly associated with a change in management practices. The observed differences in P-availability between the fen types did not result in significantly different biomass. Moreover, biomass production in both fen types was primarily N-limited although P-availability was restricted too in the extreme-rich fen. Aulacomnium palustre, the dominant moss in the moderate-rich fen, might be favoured in competition because of its broad nutrient tolerance and its quick establishment after disturbance. It might outcompete low productive rich fen species which were shown to be N-limited in both fens. We present a conceptual model of successional pathways of rich fen vegetation in the Biebrza region.  相似文献   

3.
In a typical Dutch polder landscape the effects of nutrient transport from cultivated grassland to mesotrophic fen communities were studied. In a comparative approach, biomass production and nutrient (N, P and K) uptake were determined monthly in four fens and a hayfield differeing in productivity and species composition. The interstitial ground water was sampled every two weeks for determinations of inorganic nutrient concentrations.The differences in productivity between the fens were clearly reflected in the amount of N, P and K taken up in the above-ground vegetation. N and P proved to be limiting plant growth in the fens, whereas K was the main limiting factor in the hayfield. The ground water welling up from the sandy bottom into the fens proved to be rich in ammonia (3–5 ppm). There are strong indications that this continual seepage leads to a considerable input of N into the fens but not to a higher productivity, as the ammonia is absorbed by the lowermost peat layers covering the sand.At this moment, the differences in productivity between the fens must be caused by differences in the rates of mineralization of the superficial peat layer. The degree of fixation of the floating vegetation mat, determining whether or not low water levels lead to an aerated soil top layer, is important in this respect. Within a period of decades, however, the continuous inflow of ammonia may eventually cause an increase in the productivity and a change in the species composition of the fens.  相似文献   

4.
Abstract. Nitrogen, phosphorus and potassium were supplied to some Belgian fens of varying nutrient status and productivity. Plant growth in the lowest productive fen with a species-rich Caricion davallianae vegetation was strongly P-limited. N was ineffective when applied alone, but increased the effect of P-addition when applied together. Summer biomass and plant nutrient concentrations were monitored for four years, and showed partial recovery of nutrient limitation. In a more productive fen dominated by Carex lasiocarpa and in a fen meadow, nutrient limitation was less strong. N limited growth in the productive fen, and N and K were co-limiting in the fen meadow. The P-concentration in the productive fen vegetation showed a marked increase after P-fertilization, but it did not result in higher standing crop. The significance of P-limitation for the conservation of species rich low productive fens is discussed. P-limitation may be an essential feature in the conservation of low productive rich fens: because it is less mobile in the landscape than N and/or because it is an intrinsic property of this vegetation type. Plant nutrient concentrations and N:P-ratios may be used as an indication for the presence and type of nutrient limitation in the vegetation. We found N:P-ratios of 23 to 31 for a P-limited site and 8 to 15 in N-limited sites. This was in agreement with critical values from the literature: N:P > ca. 20 for P-limitation and N:P < 14 for N-limitation. Thus, this technique appears valid in the vegetation types that were studied here.  相似文献   

5.
Van de Vijver  C. A. D. M.  Poot  P.  Prins  H. H. T. 《Plant and Soil》1999,214(1-2):173-185
The aim of the present study was to investigate the causes of increased macronutrient concentrations in above-ground post-fire regrowth in an East African savanna (Northern Tanzania). Experiments were set up to discriminate between the following possible causes: (1) increased soil nutrient supply after fire, (2) relocation of nutrients from the roots to the new shoots, (3) rejuvenation and related changes in plant tissue composition and (4) changes in nutrient uptake in relation to above-ground carbon gains. N, P, K, Ca and Mg concentrations in post-burn graminoid vegetation were compared with clipped and with unburned, control vegetation during the post-burn growth season. One month after burning and clipping, nutrient concentrations in live grass shoots in the burned and clipped treatments were significantly higher than in the control. This effect, however, declined in the course of the season and, except for Ca, disappeared three months after onset of the treatments. There were no significant differences in live grass shoot nutrient concentrations between burned and clipped treatments which suggests that the increased nutrient concentration in post-fire regrowth is not due to increased soil nutrient supply via ash deposition. The relatively low input of nutrients through ash deposition, compared to the amount of nutrients released through mineralisation during the first month after burning and to the total nutrient pools, supports this suggestion. There was no difference between burned and unburned vegetation in total root biomass and root nutrient concentrations. Relocation of nutrients from the roots to the new shoots did not, therefore, appear to be a cause of higher post-fire shoot nutrient concentrations. The present study shows that in this relatively nutrient-rich savanna, the increased nutrient concentration in above-ground post-fire regrowth is primarily due to increased leaf:stem ratios, rejuvenation of plant material and the distribution of a similar amount of nutrients over less above-ground biomass. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Abstract. The nutrient status was studied in permanent plots of four plant communities, two rich-fen communities and two wooded grassland communities, all formerly used for haymaking. The concentrations of N, P and K in plant material of dominant and subdominant species (above- and below-ground) were measured in plots experimentally scythed annually or biennially for two decades, and in plots unscythed for four decades. Three of the communities had an N:P ratio of 14 or less, indicating N-limitation; the most fertile grassland community had particularly low values for the N:P ratio (6–12), as did a majority of the species, including all tall-herb species. A species-rich community of fen-margin vegetation in the lowest productive rich fen, had an N: P ratio of 17–19 in the above-ground biomass, which indicates P-limitation of nutrients. Molinia caerulea and Thalictrum alpinum were found to be the vascular plants with the highest N:P ratio, indicating P-limitation of nutrients. Calculations of N:K and K:P ratios indicated possible K-limitation in the rich-fen communities, especially for Thalictrum alpinum, the species with the highest N:K value. No expected change from N- to P-limited growth was found; in contrast, a reduction in the N:P ratio was found in the annually scythed plots of the rich fens, suggesting that reduced biomass production is mainly a result of disturbance by scything. As expected, a reduction in the concentration of K was detected in the scythed plots.  相似文献   

7.
To provide a reference for wetlands elsewhere we analysed soil nutrients and the vegetation of floodplains and fens in the relatively undisturbed Biebrza-valley, Poland. Additionally, by studying sites along a water-table gradient, and by comparing pairs of mown and unmown sites, we aimed with exploring long-term effects of drainage and annual hay-removal on nutrient availabilities and vegetation response. In undrained fens and floodplains, N mineralization went slowly (0–30 kg N ha−1 year−1) but it increased strongly with decreasing water table (up to 120 kg N ha−1 year−1). Soil N, P and K pools were small in the undisturbed mires. Drainage had caused a shift from fen to meadow species and the disappearance of bryophytes. Biomass of vascular plants increased with increasing N mineralization and soil P. Annual hay-removal tended to have reduced N mineralization and soil K pools, but it had increased soil P. Moreover, N concentrations in vascular plants were not affected, but P and K concentrations and therefore N:P and N:K ratios tended to be changed. Annual hay-removal had induced a shift from P to K limitation in the severely drained fen, and from P to N limitation in the floodplain. The low nutrient availabilities and productivity of the undisturbed Biebrza mires illustrate the vulnerability of such mires to eutrophication in Poland and elsewhere. In nutrient-enriched areas, hay removal may prevent productivity increase of the vegetation, but also may severely alter N:P:K stoichiometry, induce K-limitation at drained sites, and alter vegetation structure and composition.  相似文献   

8.
Variation in nitrogen and phosphorus concentrations of wetland plants   总被引:11,自引:0,他引:11  
The use of nutrient concentrations in plant biomass as easily measured indicators of nutrient availability and limitation has been the subject of a controversial debate. In particular, it has been questioned whether nutrient concentrations are mainly species' traits or mainly determined by nutrient availability, and whether plant species have similar or different relative nutrient requirements. This review examines how nitrogen and phosphorus concentration and the N:P ratio in wetland plants vary among species and sites, and how they are related to nutrient availability and limitation. We analyse data from field studies in European non-forested wetlands, from fertilisation experiments in these communities and from growth experiments with wetland plants. Overall, the P concentration was more variable than the N concentration, while variation in N:P ratios was intermediate. Field data showed that the N concentration varies more among species than among sites, whereas the N:P ratio varies more among sites than among species, and the P concentration varies similarly among both. Similar patterns of variation were found in fertilisation experiments and in growth experiments under controlled nutrient supply. Nutrient concentrations and N:P ratios in the vegetation were poorly correlated with various measures of nutrient availability in soil, but they clearly responded to fertilisation in the field and to nutrient supply in growth experiments. In these experiments, biomass N:P ratios ranged from 3 to 40 and primarily reflected the relative availabilities of N and P, although N:P ratios of plants grown at the same nutrient supply could vary three-fold among species. The effects of fertilisation with N or P on the biomass production of wetland vegetation were well related to the N:P ratios of the vegetation in unfertilised plots, but not to N or P concentrations, which supports the idea that N:P ratios, rather than N or P concentrations, indicate the type of nutrient limitation. However, other limiting or stressing factors may influence N:P ratios, and the responses of individual plant species to fertilisation cannot be predicted from their N:P ratios. Therefore, N:P ratios should only be used to assess which nutrient limits the biomass production at the vegetation level and only when factors other than N or P are unlikely to be limiting.  相似文献   

9.
The 'resource balance hypothesis' proposes that the species richness of grassland vegetation is potentially highest when the N:P ratio of plant tissues is 10–15 (co-limitation), so that species richness could be raised by fertilisation with N or P at sites with lower or higher N:P ratios, respectively. Here we use data from field surveys in Swiss, Dutch and American fens or wet grasslands to analyse what changes in N:P ratios might produce noticeable changes in species richness. Plant species numbers, above-ground biomass, tissue N and P concentrations and soil pH were recorded in plots of 0.06–4 m2. In each data set, plots with intermediate tissue N:P ratios (6–20) were on average most species-rich, but N:P ratios explained only 5–37% of the variation in species richness. Moreover, these effects were partially confounded with those of vegetation biomass and/or soil pH. The unique effects of N:P ratios (excluding those shared with biomass and pH) explained 11–17% of variation in species richness. The relationship between species richness and N:P ratios was asymmetric: plots with high N:P ratios were more species-poor than those with low N:P ratios. This was paralleled by a smaller species pool size at high N:P ratios (estimated from species numbers in multiple records), suggesting that fewer species are adapted to P-limited conditions than to N-limited conditions. According to these data, species richness in wetlands may possibly be raised by P-fertilisation when the initial N:P ratio of the vegetation is well above 20, but this option is not recommended for nature conservation as it might promote common species at the expense of rare ones.  相似文献   

10.
Brown moss-dominated rich fens are characterized by minerotrophic conditions, in which calcium (Ca) and iron (Fe) concentrations show large variations. We examined the relative importance of Ca and Fe in relation to the occurrence of three typical brown moss species: Scorpidium scorpioides, Scorpidium cossonii, and Hamatocaulis vernicosus. Peat chemistry was examined in 24 stands of brown moss-dominated rich fens: 12 in the Netherlands and 12 in central Sweden. Ca and Fe turned out to be important drivers of brown moss composition. Fens dominated by Scorpidium scorpioides or Scorpidium cossonii were characterized by high pore water Ca-concentrations and total soil Ca-contents, but low P-availability. In these Ca-rich, but Fe-poor fens, foliar N:P ratios of vascular vegetation exceeded 20?g?g?1, indicating phosphorus (P)-limitation due to Ca-P precipitation or low P-sorption capacity due to low Fe-levels. In contrast, fens dominated by Hamatocaulis vernicosus were characterized by high pore water Fe-concentrations and total soil Fe-contents, but also relatively high P-availability. N:P ratios in these fens were below 13.5?g?g?1, indicating potential nitrogen (N)-limitation. We conclude that the relative roles of Ca and Fe, as related to the geohydrological conditions present, strongly determine the brown moss composition in rich fens through their differential effects on plant P-availability.  相似文献   

11.
  1. Previous studies of the N:P ratio in wetland plants have been carried out in northern hemisphere wetlands where atmospheric nitrogen deposition is higher. There is little research on foliar N:P ratio as a potential indicator of nutrient limitation in vegetation communities in southern hemisphere wetlands. This study aimed to redress this knowledge gap and answer the following questions: how well does the plant tissue nitrogen to phosphorus (N:P) ratio predict wetland plant community nutrient limitation, as indicated by vegetation standing stocks and below-ground biomass, in southern hemisphere fens? Secondly, what are the impacts of realistic upper levels of farm nutrient run-off on natural montane fen vegetation?
  2. Low (35 kg ha−1 year−1) and high (70 kg ha−1 year−1) levels of nitrate-N or ammonium-N with and without P (20 kg ha−1 year−1) were added to 81 vegetation plots over a period of 2.75 years. Species composition, plant nutrient status, and above-ground live vegetation standing stocks were assessed after 3 years, and below-ground biomass after 2 years.
  3. Plant tissue analysis suggested the community was N limited or N and P co-limited; we found greater standing stocks of vegetation in plots treated with 70 kg ha−1 year−1 ammonium-N, indicating N limitation. No difference between other treatments was found in above-ground standing stocks or below-ground biomass. Plant species cover increased in both high N treatments, consistent with N limitation. These changes in plant species cover were accompanied by significant decreases in species richness in both high N treatments. Native species dominated the vegetation and this was unaffected by nutrient addition (90% cover).
  4. This is one of the first studies to test and find support for the N:P ratio in southern hemisphere wetlands. Observed declines in species richness after N fertilisation in an N-limited fen suggests increased N may pose risks to austral wetlands. Responses by plant communities (changes in composition, biomass) to lower levels of nutrient addition may require longer periods of fertilisation to be apparent in slow growing ecosystems.
  相似文献   

12.
An understanding of the mechanisms controlling nutrient availability and retention in and across ecosystems allows for a greater understanding of the role of nutrients in maintaining ecosystem structure and function. To examine the underlying mechanisms of phosphorus (P) cycling in northern peatlands, we compared the retention and movement of P across a natural hydrologic/pH gradient in nine peatlands by applying as a light rain an in situ tracer amount of 32PO4 –3 to track changes in P pools (vegetation, soil, microbial) over 30 days. The 31P concentrations of available P, microbial P, and the root P at 10–20 cm did not differ across the gradient, although total soil P and aboveground vegetation P content (g m–2) increased from bog to rich fen. Total retention of 32P in the first 24 hours of application was greatest in the bogs and intermediate fens (90–100%) and was very low (20–50%) in the rich fens. Retention of P in the different pools was dependent on the type of peatland and changed with time. In the first 24 hours in the bogs and intermediate fens, the microbial pool contained the largest amount of 32P, but by the seventh day, the aboveground vegetation contained the largest amount. In the rich fen, the recovered 32P was almost equally divided between the aboveground vegetation and the litter layer with very little in other pools. Therefore, although bogs and intermediate fens have a small total P pool, they have similar P availability to rich fens because of rapid cycling and efficient retention of P.  相似文献   

13.
Summary Concentrations of P, N, K, Ca, and Mg in above-ground tissues ofP. caribaea were sampled in the species'native savanna habitat. Concentrations were relatively low, but some evidence of higher consumption of K and Ca was found in trees grown on more fertile soils. Regressions were developed to predict the quantities of nutrients sequestered in above-ground tree tissues, and estimates made of the quantities stored in above-ground stands of this species in its native habitat and in several plantations elsewhere. Estimates were also made of the nutrient removals to be expected by harvesting these stands in different ways. Nutrient quantities stored in stands generally exceed those extractable from savanna surface soils, and it is suggested that inputs from the atmosphere are the most probable alternate nutrient source. A comparison of these inputs for tropical areas with the quantities required for stand growth in the savanna, and harvesting removals, suggests that an adequate supply of all elements except P exists, provided that capture by pine is effective. However, atmospheric inputs generally fall below the storage and harvest removal rates for fast growing exotic plantations of this species suggesting that multiple rotations of these plantations at current growth rates may not be feasible without artifical fertilization.  相似文献   

14.
Question: How do nitrogen and phosphorus budgets and balances differ between eutrophic fens and floodplains in western Europe and fens and floodplains in Poland, where we expect less eutrophication to occur? Location: Wetlands along the rivers Dommel (The Netherlands), Zwarte Beek (Belgium) and Biebrza (NE Poland). Methods: Assessment of external input and output fluxes as well as net N‐mineralization rates. Annual N‐ and P‐balances were estimated by the sum of all external input and output fluxes: atmospheric deposition, input of dissolved matter by flooding, input of sediment by flooding, input by groundwater, output by leaching, output by hay‐making and for N also input by N2‐fixation. For N we also estimated net annual N‐availability for plant growth, i.e. the N‐budget, which includes net mineralization in soil. Results: The studied wetland sites had a negative balance, which means that nutrients are depleted but only if mown annually, except for the Dutch/Belgian fens which had an equilibrium N‐balance and the Polish fen which had an equilibrium P‐balance. For the N‐budget it appeared that atmospheric deposition added significantly to the budget of Dutch/Belgian fens and N‐mineralization added significantly to fen and floodplain budgets, except for the Polish fens. Mineralization dominates the N‐budget of the western European floodplains. Hay‐making is the most important output pathway, particularly if practised annually. It seems to diminish N‐enrichment in the Dutch fens and floodplains. Conclusions: We conclude that western European fens and floodplains as well as Polish floodplains have a significant positive N‐budget indicating that there is a surplus of N for plant growth. In the Polish fens this is less due to low atmospheric deposition and lower N‐mineralization rates. The latter is associated with less drying out of the studied Polish ecosystems in summer. Our approach, although an approximate quantification, is helpful for assessing priorities focused on nutrient management.  相似文献   

15.
Question: Do tissue element concentrations at the individual species level vary along major vegetation gradients in wetlands, and can they indicate environmental conditions? Location: West Carpathians. Methods: Total plant species composition was recorded in plots distributed along a poor to rich gradient within spring fens and along the gradient from fens to wet meadows. Eriophorum angustifolium (Cyperaceae) and three broadleaf dicotyledonous herb species were collected from the vegetation plots. Tissue N, P, K, Ca and Fe concentrations, N:P and N:K ratios of the species were determined. Each variable was correlated with the sample scores along the first two axes of the DCA ordination, which represented the two main vegetation gradients. Results: K and Ca concentrations in a particular species correlated well with the vegetation gradients, thus indicating changes in the element availability to the species. The trends were sometimes contradictory to known patterns at the community level, but the differences could be ecologically interpreted. Contrary to Ca and K, patterns in N, P and Fe concentration appeared to be more species‐specific. E. angustifolium had a lower K and Ca concentration than the broadleaf herbs. Conclusions: Compared to community‐level measurements, element concentrations in individual species correlated less with observed vegetation gradients. Trends found at the species level may indicate changes in ecological conditions affecting the species, although they need not correspond with trends found at the community level. We conclude that the species‐level approach cannot substitute, but can advance, the community‐level approach in searching for mechanisms underlying vegetation gradients within wetlands.  相似文献   

16.
Green and senesced leaf nitrogen (N) and phosphorus (P) concentrations of different plant functional groups in savanna communities of Kruger National Park, South Africa were analyzed to determine if nutrient resorption was regulated by plant nutritional status and foliar N:P ratios. The N and P concentrations in green leaves and the N concentrations in senesced leaves differed significantly between the dominant plant functional groups in these savannas: fine-leaved trees, broad-leaved trees and grasses. However, all three functional groups reduced P to comparable and very low levels in senesced leaves, suggesting that P was tightly conserved in this tropical semi-arid savanna ecosystem. Across all functional groups, there was evidence for nutritional control of resorption in this system, with both N and P resorption efficiencies decreasing as green leaf nutrient concentrations increased. However, specific patterns of resorption and the functional relationships between nutrient concentrations in green and senesced leaves varied by nutrient and plant functional group. Functional relationships between N concentrations in green and senesced leaves were indistinguishable between the dominant groups, suggesting that variation in N resorption efficiency was largely the result of inter-life form differences in green leaf N concentrations. In contrast, observed differences in P resorption efficiencies between life forms appear to be the result of both differences in green leaf P concentrations as well as inherent differences between life forms in the fraction of green leaf P resorbed from senescing leaves. Our results indicate that foliar N:P ratios are poor predictors of resorption efficiency in this ecosystem, in contrast to N and P resorption proficiencies, which are more responsive to foliar N:P ratios.  相似文献   

17.
We determined concentrations of major nutrients in the vegetation of six habitat types (hummock, scrub, lawn, fen meadow, hollow and marginal stream), spanning a broad range of environmental conditions as regards water-table depth and water chemistry, in five mires on the southern Alps of Italy. Our study was based on chemical analyses of living tissues of plant species, grouped into growth-form based plant functional types (PFTs). We aimed at assessing to what extent the observed differences in tissue nutrient content were accounted for by community composition (both in terms of species and PFTs) and by habitat. Nutrient concentrations were overall lowest in Sphagnum mosses and highest in forbs, although the latter showed large variations presumably due to heterogeneity in mechanisms and adaptations for acquiring nutrients among species within this PFT. Nutrient content patterns in the other three PFTs varied greatly in relation to individual nutrients, with evergreen shrubs showing low nitrogen (N) concentrations, graminoids showing high N concentrations but low potassium (K) and magnesium (Mg) concentrations and deciduous shrubs showing rather high phosphorus (P) concentrations. Habitat accounted for a modest fraction of variation in tissue concentration of all nutrients except P. We concluded that the nutrient status of mire vegetation is primarily controlled by community composition and structure although habitat does exert a direct control on P concentration in the vegetation, presumably through P availability for plant uptake.  相似文献   

18.
The resource balance hypothesis of plant species diversity in grassland   总被引:4,自引:0,他引:4  
Abstract: We hypothesize that plant species diversity is favoured when actual resource supply ratios are balanced according to the optimum resource supply ratios for the vegetation as a whole. This ‘resource balance hypothesis of plant species diversity’ (RBH) follows from two different mechanisms of plant species coexistence, namely: ‘differential resource limitation’, which allows species to coexist in a competitive equilibrium in a homogeneous environment and ‘micro-habitat differentiation’, which builds on spatial heterogeneity. Both mechanisms require that resource supply ratios are intermediate between the optimum supply ratios of the species present in the species pool. Additional conditions, concerning the resource acquisition and requirement ratios of the species, are easier to meet for the second mechanism than for the first. To test the RBH we measured species diversity parameters in 74 grassland plots, as well as the N, P and K concentrations in the above-ground biomass. We used a new ceiling detection algorithm to examine the relationship between maximum observed diversity and the N/P-, P/K- and K/N-ratios in the biomass. Most of these ceiling relationsips could be described by parabolic curves with significant quadratic terms. This indicates that high diversity does not occur at the extremes of the observed ranges of nutrient ratios. This supports the RBH.  相似文献   

19.

Aims

We estimate organic carbon (C): total nitrogen (N): total phosphorus (P) ratios in soils under Australia’s major native vegetation groups.

Methods

We use digital datasets for climate, soils, and vegetation created for the National Land and Water Resources Audit in 2001. Analysis-of-variance is used to investigate differences in nutrient ratios between ecosystems. Linear discriminant analysis and logistic regression are used to investigate the relative importance of climatic variables and soil nutrients in vegetation patterns.

Results

We find that the N:P and C:P ratios have a greater range of values than the C:N ratio, although major vegetation groups tend to show similar trends across all three ratios. Some apparently homeostatic groupings emerge: those with very low, low, medium, or high N:P and C:P. Tussock grasslands have very low soil N, N:P, and C:P, probably due to frequent burning. Eucalypt woodlands have low soil N:P and C:P ratios, although their total P level varies. Rainforests and Melaleuca forests have medium soil N:P and C:P ratios, although their total P level is different. Heathlands, tall open eucalypt forests, and shrublands occur on soils with low levels of total P, and high N:P and C:P ratios that reflect foliar nutrient ratios and recalcitrant litter.

Conclusions

Certain plant communities have typical soil nutrient stoichiometries but there is no single Redfield-like ratio. Vegetation patterns largely reflect soil moisture but for several plant communities, eucalypt communities in particular, soil N and P (or N:P) also play a significant role. Soil N:P and the presence of Proteaceae appear indicative of nutrient constraints in ecosystems.  相似文献   

20.
Van Duren  I. C.  Boeye  D.  Grootjans  A. P. 《Plant Ecology》1997,133(1):91-100
In a species-rich poor fen (Caricetum nigrae) and a species-poor drained fen, the difference in nutrient limitation of the vegetation was assessed in a full-factorial fertilization experiment with N, P and K. The results were compared to the nutrient ratios of plant material and to chemical analysis of the topsoil. A rewetting experiment with intact sods was carried out in the glasshouse and the results are discussed in view of restoration prospects of drained and degraded peatlands. In the undrained poor fen the above-ground biomass yield was N-limited while the vegetation of the drained fen was K-limited. Experimental rewetting of intact turf samples, taken in the drained site, did not change the biomass yield or the type of nutrient limitation. It was concluded that mire systems which have been subjected to prolonged drainage are inclined to pronounced K-deficiency, probably due to washing out of potassium and harvesting the standing crop. This may hamper restoration projects in degraded peat areas where nature conservation tries to restore species-rich vegetation types with a high nature value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号