首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 718 毫秒
1.
异质种群动态模型:破碎化景观动态模拟的新途径   总被引:11,自引:3,他引:8  
张育新  马克明  牛树奎 《生态学报》2003,23(9):1877-1790
景观破碎化导致物种以异质种群方式存活,使得基于异质种群动态模拟破碎化景观动态成为可能。异质种群动态模型的发展为景观动态模拟奠定了良好基础。根据空间处理方式的不同,异质种群模型可分为三大类,可不同程度地用于描述破碎化景观动态。(1)空间不确定异质种群模型,假定所有局域种群间均等互联,模型中不包含空间信息,仅能用于景观斑块动态描述;(2)空间确定异质种群模型,假设局域种群在二维空间上以规则格子形式排列,是一种准现实的空间处理方式,可用于景观动态的简单描述;(3)空间现实异质种群模型,包含了破碎化景观中局域种群的几何特征,可直接用于真实景观动态的模拟研究。空间现实的和基于个体的异质种群模型不但是未来异质种群模型发展的主流,也将成为未来破碎化景观动态研究的重要工具。为了更加准确完整地描述破碎化景观动态,不但应该综合运用已有的各种异质种群模型方法,更要引进新模型来刎画多物种、多变量、高维度、复杂连接的破碎化景观格局与过程。  相似文献   

2.
Meta分析及其在生态学上的应用   总被引:25,自引:2,他引:23  
1Meta分析的概念和它的发展应用Meta分析(Meta-Analysis)是一种定量综合研究结果的方法.这种方法的思想起源于本世纪30年代,60年代用于教育、心理等社会科学领域,1976年由Glas命名为术语“Meta-Analysis”[1]。G...  相似文献   

3.
用格子Boltzmann方法求解用反应一扩散方程组描述的食物链种群模型.我们用一维和二维方程组进行数值实验,模拟结果与现有的数值实验结果很好地吻合,反映了格子Boltzmann方法的高效性和稳定性,并就二维格子、Boltzmann格式,通过其等价的差分格式,由极值原理证明了该格式的稳定性.  相似文献   

4.
局域种群的Allee效应和集合种群的同步性   总被引:3,自引:0,他引:3  
从包含Allee效应的局域种群出发,建立了耦合映像格子模型,即集合种群模型.通过分析和计算机模拟表明:(1)当局域种群受到Allee效应强度较大时,集合种群同步灭绝;(2)而当Allee效应强度相对较弱时,通过稳定局域种群动态(减少混沌)使得集合种群发生同步波动,而这种同步波动能够增加集合种群的灭绝风险;(3)斑块间的连接程度对集合种群同步波动的发生有很大的影响,适当的破碎化有利于集合种群的续存.全局迁移和Allee效应结合起来增加了集合种群同步波动的可能,从而增加集合种群的灭绝风险.这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义.  相似文献   

5.
Allee效应与种群的灭绝密切相关,其研究对生态保护和管理至关重要。Allee效应对物种续存是潜在的干扰因素,濒危物种更容易受其影响,可能会增加生存于生境破碎化斑块的濒危物种的死亡风险,因此研究Allee效应对种群的动态和续存的影响是必要的。从包含由生物有机体对环境的修复产生的Allee效应的集合种群模型出发,引入由其他机制形成的Allee效应,建立了常微分动力系统模型和基于网格模型的元胞自动机模型。通过理论分析和计算机模拟表明:(1)强Allee效应不利于具有生境恢复的集合种群的续存;(2)生境恢复有利于种群续存;(3)局部扩散影响了集合种群的空间结构、动态行为和稳定性,生境斑块之间的局部作用将会减缓或消除集合种群的Allee效应,有利于集合种群的续存。  相似文献   

6.
高志灵  苏敏  江正俊 《生态学报》2021,41(7):2886-2894
物种间相互作用是影响生物群落稳定性和多样性的重要因素。基于Lotka-Volterra竞争模型,通过构建多宿主种群的种内和种间高阶相互作用模型,研究宿主种群的间接竞争效应对寄生群落动态的影响机制。为有效地揭示高阶作用对种群动态的影响,通过对比宿主-寄生群落的现象模型以及机制模型,利用机制模型产生的合理数据集对现象模型中高阶项的参数进行拟合,进而探讨了高阶相互作用在群落动态中的作用。结果显示,完整的高阶相互作用模型在描述多宿主-寄生系统的群落动态中表现最优,而直接相互作用模型对群落动态的描述相对较差,即同时考虑种间和种内的高阶相互作用模型更加符合机制模型所描述的群落动态。此外,种内高阶作用和种间高阶作用产生不对称效应,宿主间的种间高阶作用对群落产生的影响较种内高阶作用更为显著。该研究结果在一定意义上丰富了宿主-寄生生物群落的稳定性研究,为理解物种间相互作用的多样性研究提供了依据。  相似文献   

7.
惠苍 《西北植物学报》2004,24(3):370-383
集合种群的空间模式研究是当今生态学的核心问题之一。本研究利用常微分动力系统以及基于网格模型的元胞自动机模型对Allee效应、拥挤效应以及捕食作用集合种群的空间分布模式做了全面的模拟研究。Allee效应描述当种群水平低于某一阈值时会发生由生殖成功几率下降造成的种群负增长率,而拥挤效应是指当种群密度过高时引起的个体性为异常从而达到调节种群增长率的作用。文章组建了3个空间确定性模型:局部作用模型(CIM)、距离敏感模型(DSM)和集合种群捕食模型(MMP)。局部作用模型显示在一维生境中空斑块形成金字塔状,二维模型显示出明显的动态拟周期性以及由空间混沌所形成的异质性。距离敏感模型可导致由迁移个体中密度制约强度决定的集合种群大小复杂动态与种群密度的双峰分布。这些结果说明动态行为的复杂性,不仅可用于表征研究物种的特性,而且可以表明该物种的续存能力与灭绝风险。集合种群捕食模型是概率转换空间模型,利用该模型得出了依赖于模型参数和生境尺度的白组织种群概率空间分布模式。模拟的结果表明,系统的内在机制和这种白组织模式导致捕食者形成集团型不明显的“捕食小组”或“杀手小组”,并具有较高扩散力.但却包括侵占率低、灭绝率高的特点。而使猎物种群形成高集团性、高侵占率、低灭绝率、低扩散力的种群集团。这种特点又使捕食者种群在生境中处于中心地带,而使猎物种群形成在捕食者和生境边缘间的环状分布。这些结果还说明了尺度对于生态学的研究是至关重要的,不同的尺度将产生不同的系统模式。  相似文献   

8.
杨立  李维德 《生态学报》2012,32(6):1773-1782
利用概率元胞自动机模型对空间隐式的、食饵具Allee效应的一类捕食食饵模型进行模拟,发现随着相关参数的变化,种群的空间扩散前沿由连续的扩散波逐渐转变为一种相互隔离的斑块向外扩散,这种斑块扩散现象与以往的扩散模式有所不同。研究结果表明:(1)在斑块扩散的情况下,相关参数的微小变化会导致种群灭绝或者形成连续的扩散波,即斑块扩散发生在种群趋于灭绝和连续扩散之间;(2)当种群的空间扩散方式为斑块扩散时,种群的扩散速度会变慢,与其他扩散方式下的速度有着明显的区别。该研究结果对生物入侵控制和外来物种监测有重要的启发和指导作用。  相似文献   

9.
羊草(Leymus chinensis)种群无性系种群动态的初步研究   总被引:26,自引:2,他引:26  
王昱生 《生态学报》1993,13(4):291-299
本文根据1985-1990年在天然羊草种群无性系的观测与统分析,在研究羊草种群性系生活周期的基础上,探讨了其种群动态,建立了用转移概率矩阵表示的种群动态模型。通过用两种营养繁殖系数Rv1和Rv2模拟种群密度变化,发现用转移概率矩陈种群动态模型和现存种群营养繁殖系数Rv2预测羊草种群密度。  相似文献   

10.
试图通过对碱化草地景观动态过程与群落多样性和空间格局的关系的分析,探讨利用景观的多样性指标和空间格局指数来解释和预测景观发展动态及其对气候变化的响应的可能性。运用空间仿真的方法,对东北松嫩平原碱化草地景观动态进行了模拟。模型强调景观内的斑块(即空间匀质生态系统)的演替与土壤碱化度的相互耦合作用。在当前气候条件下,模型的输出结果与观测到的1989 ̄1993年在1hm^2样地内的斑块分布动态非常吻合。  相似文献   

11.
Despite the considerable evidence showing that dispersal between habitat patches is often asymmetric, most of the metapopulation models assume symmetric dispersal. In this paper, we develop a Monte Carlo simulation model to quantify the effect of asymmetric dispersal on metapopulation persistence. Our results suggest that metapopulation extinctions are more likely when dispersal is asymmetric. Metapopulation viability in systems with symmetric dispersal mirrors results from a mean field approximation, where the system persists if the expected per patch colonization probability exceeds the expected per patch local extinction rate. For asymmetric cases, the mean field approximation underestimates the number of patches necessary for maintaining population persistence. If we use a model assuming symmetric dispersal when dispersal is actually asymmetric, the estimation of metapopulation persistence is wrong in more than 50% of the cases. Metapopulation viability depends on patch connectivity in symmetric systems, whereas in the asymmetric case the number of patches is more important. These results have important implications for managing spatially structured populations, when asymmetric dispersal may occur. Future metapopulation models should account for asymmetric dispersal, while empirical work is needed to quantify the patterns and the consequences of asymmetric dispersal in natural metapopulations.  相似文献   

12.
Habitat structure increases the persistence of many extinction‐prone resource–consumer interactions. Metapopulation theory is one of the leading approaches currently used to explain why local, ephemeral populations persist at a regional scale. Central to the metapopulation concept is the amount of dispersal occurring between patches, too much or too little can result in regional extinction. In this study, the role of dispersal on the metapopulation dynamics of an over‐exploitative host–parasitoid interaction is assessed. In the absence of the parasitoid the highly vagile bruchid, Callosobruchus maculatus, can maintain a similar population size regardless of the permeability of the inter‐patch matrix and exhibits strong negative density‐dependence. After the introduction of the parasitoid the size of the bruchid population decreases with a corresponding increase in the occurrence of empty patches. In this case, limiting the dispersal of both species decouples the interaction to a greater extent and results in larger regional bruchid populations. Given the disparity between the dispersal rates of the two species, it is proposed that the more dispersive host benefits from the reduction in landscape permeability by increasing the opportunity to colonise empty patches and rescue extinction prone populations. Associated with the introduction of the parasitoid is a shift in the strength of density‐dependence as the population moves from bottom–up towards top–down regulation. The importance of local and regional scale measurements is apparent when the role of individual patches on regional dynamics is considered. By only taking regional dynamics into account the importance of dispersal regime on local dynamics is overlooked. Similarly, when local dynamics were examined, patches were found to have different influences on regional dynamics depending on dispersal regime and patch location.  相似文献   

13.
Population viability analysis (PVA) models incorporate spatial dynamics in different ways. At one extreme are the occupancy models that are based on the number of occupied populations. The simplest occupancy models ignore the location of populations. At the other extreme are individual-based models, which describe the spatial structure with the location of each individual in the population, or the location of territories or home ranges. In between these are spatially structured metapopulation models that describe the dynamics of each population with structured demographic models and incorporate spatial dynamics by modeling dispersal and temporal correlation among populations. Both dispersal and correlation between each pair of populations depend on the location of the populations, making these models spatially structured. In this article, I describe a method that expands spatially structured metapopulation models by incorporating information about habitat relationships of the species and the characteristics of the landscape in which the metapopulation exists. This method uses a habitat suitability map to determine the spatial structure of the metapopulation, including the number, size, and location of habitat patches in which subpopulations of the metapopulation live. The habitat suitability map can be calculated in a number of different ways, including statistical analyses (such as logistic regression) that find the relationship between the occurrence (or, density) of the species and independent variables which describe its habitat requirements. The habitat suitability map is then used to calculate the spatial structure of the metapopulation, based on species-specific characteristics such as the home range size, dispersal distance, and minimum habitat suitability for reproduction. Received: April 1, 1999 / Accepted: October 29, 1999  相似文献   

14.
Abstract Integration of habitat heterogeneity into spatially realistic metapopulation approaches reveals the potential for key cross-scale interactions. Broad-scale environmental gradients and land-use practices can create autocorrelation of habitat quality of suitable patches at intermediate spatial scales. Patch occupancy then depends not only on habitat quality at the patch scale but also on feedbacks from surrounding neighborhoods of autocorrelated patches. Metapopulation dynamics emerge from how demographic and dispersal processes interact with relevant habitat heterogeneity. We provide an empirical example from a metapopulation of round-tailed muskrats (Neofiber alleni) in which habitat quality of suitable patches was spatially autocorrelated most strongly within 1,000 m, which was within the expected dispersal range of the species. After controlling for factors typically considered in metapopulation studies—patch size, local patch quality, patch connectivity—we use a cross-variogram analysis to demonstrate that patch occupancy by muskrats was correlated with habitat quality across scales ≤1,171 m. We also discuss general consequences of spatial heterogeneity of habitat quality for metapopulations related to potential cross-scale interactions. We focus on spatially correlated extinctions and metapopulation persistence, hierarchical scaling of source–sink dynamics, and dispersal decisions by individuals in relation to information constraints.  相似文献   

15.
George L. W. Perry  Finnbar Lee 《Oikos》2019,128(9):1277-1286
Metapopulation persistence depends on connectivity between habitat patches. While emphasis has been placed on the spatial dynamics of connectivity, much less has been placed on its short‐term temporal dynamics. In many terrestrial and aquatic ecosystems, however, transient (short‐term) changes in connectivity occur as habitat patches are connected and disconnected due, for example, to climatic or hydrological variability. We evaluated the implications of transient connectivity using a network‐based metapopulation model and a series of scenarios representing temporal changes in connectivity. The transient loss of connectivity can influence metapopulation persistence, and more strongly autocorrelated temporal dynamics affect metapopulation persistence more severely. Given that many ecosystems experience short‐term and temporary loss of habitat connectivity, it is important that these dynamics are adequately represented in metapopulation models; failing to do so may yield overly optimistic‐estimates of metapopulation persistence in fragmented landscapes.  相似文献   

16.
生境破坏的模式对集合种群动态和续存的影响   总被引:2,自引:0,他引:2  
宋卫信  张锋  刘荣堂 《生态学报》2009,29(9):4815-4819
构建了空间关联的集合种群模型,该模型不但包含了种群的空间结构信息,而且引入了破坏生境的全局密度和局部密度两个指标,它们描述了破坏生境的模式.模型揭示了破坏生境的空间分布格局复杂地影响了集合种群的动态和续存,破坏和未破坏生境斑块的均匀混合不利于集合种群的增长和续存,而生境类型聚集分布可以促进集合种群的快速增长和长期续存;对于两种斑块类型相对均匀混合的生境来说,均匀场假设可能会高估集合种群的续存,对于相对斑块类型高度聚集的生境,均匀场假设可能会低估集合种群的续存;物种的迁移范围也会影响集合种群的续存,迁移范围越大的物种越容易抵御生境的破坏而免遭灭绝.这意味着在生物保护中不能仅仅考虑生境的恢复和斑块质量的改善,生境结构的构建也是很重要的,加强生境斑块之间的连通性也有利于物种的长期续存.  相似文献   

17.
Host–parasitoid metapopulation models have typically been deterministic models formulated with population numbers as a continuous variable. Spatial heterogeneity in local population abundance is a typical (and often essential) feature of these models and means that, even when average population density is high, some patches have small population sizes. In addition, large temporal population fluctuations are characteristic of many of these models, and this also results in periodically small local population sizes. Whenever population abundances are small, demographic stochasticity can become important in several ways. To investigate this problem, we have reformulated a deterministic, host–parasitoid metapopulation as an integer-based model in which encounters between hosts and parasitoids, and the fecundity of individuals are modelled as stochastic processes. This has a number of important consequences: (1) stochastic fluctuations at small population sizes tend to be amplified by the dynamics to cause massive population variability, i.e. the demographic stochasticity has a destabilizing effect; (2) the spatial patterns of local abundance observed in the deterministic counterpart are largely maintained (although the area of ''spatial chaos'' is extended); (3) at small population sizes, dispersal by discrete individuals leads to a smaller fraction of new patches being colonized, so that parasitoids with small dispersal rates have a greater tendency for extinction and higher dispersal rates have a larger competitive advantage; and (4) competing parasitoids that could coexist in the deterministic model due to spatial segregation cannot now coexist for any combination of parameters.  相似文献   

18.
Metapopulation processes are important determinants of epidemiological and evolutionary dynamics in host-pathogen systems, and are therefore central to explaining observed patterns of disease or genetic diversity. In particular, the spatial scale of interactions between pathogens and their hosts is of primary importance because migration rates of one species can affect both spatial and temporal heterogeneity of selection on the other. In this study we developed a stochastic and discrete time simulation model to specifically examine the joint effects of host and pathogen dispersal on the evolution of pathogen specialisation in a spatially explicit metapopulation. We consider a plant-pathogen system in which the host metapopulation is composed of two plant genotypes. The pathogen is dispersed by air-borne spores on the host metapopulation. The pathogen population is characterised by a single life-history trait under selection, the infection efficacy. We found that restricted host dispersal can lead to high amount of pathogen diversity and that the extent of pathogen specialisation varied according to the spatial scale of host-pathogen dispersal. We also discuss the role of population asynchrony in determining pathogen evolutionary outcomes.  相似文献   

19.
 Dispersal polymorphism and evolutionary branching of dispersal strategies has been found in several metapopulation models. The mechanism behind those findings has been temporal variation caused by cyclic or chaotic local dynamics, or temporally and spatially varying carrying capacities. We present a new mechanism: spatial heterogeneity in the sense of different patch types with sufficient proportions, and temporal variation caused by catastrophes. The model where this occurs is a generalization of the model by Gyllenberg and Metz (2001). Their model is a size-structured metapopulation model with infinitely many identical patches. We present a generalized version of their metapopulation model allowing for different types of patches. In structured population models, defining and computing fitness in polymorphic situations is, in general, difficult. We present an efficient method, which can be applied also to other structured population or metapopulation models. Received: 6 March 2001 / Revised version: 12 February 2002 / Published online: 17 July 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号