首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Abstract. The regeneration after fire of the dominant east Mediterranean dwarf-shrub Sarcopoterium spinosum was studied under various habitat and geographic conditions in northern Israel, northern Crete and the Aegean coast of Turkey. Age structures of regenerating stands were determined 3–9 yr after fire on 13 1 mx 1 m sample stands by analysis of growth rings in the taproot crown of 874 plants. S. spinosum regenerated either by massive seedling recruitment in some habitats or by resprouting from surviving meristems in others. This versatility facilitates adaptation of the species to widely different environmental conditions and is a factor in the maintenance of its dominance after fire at occupied sites. In the years after fire, the growth of younger plants within the stand at all sites was severely suppressed by the older shrubs. Consequently, the age structure of the stands was dominated by one or two older cohorts that became established soon after fire. In addition, on most habitats, older shrubs (usually older than 6 yr) were often composed of clusters of plants that suggested clonal proliferation of ramets. The strongly peaked age structure, together with the appearance of clonal regeneration on the older plants, suggests that subsequent maintenance of the stand was not dependent on recurrent seedling recruitment. This can explain the persistence of S. spinosum in stands of herbaceous vegetation despite the extreme sensitivity of the seedlings to competition under such conditions.  相似文献   

2.
The aim of this study was to determine the effect of waterlogging on annual regeneration in the dwarf birch (Betula nana L.), and to determine which demographic factors are responsible for the absence of B. nana in the waterlogged parts of a peat-bog. Growth parameters and demographic data were collected from 2001 to 2003 at four sites in the Linje peat bog in the Chełmno Lake District in northern Poland. Three of the sites represented waterlogged open bog communities. The fourth site served as the reference. The density of first-year ramets, annual shoot growth, and the proportion of flowering shoots was significantly lower at the waterlogged sites than at the reference site. No seedlings were found during the course of the study, even though flowering and fruit production took place at the reference site. The flowering shoots were mainly between nine and thirteen years old. Ramets in this age range were found only at the reference site due to high mortality in mature ramets at the waterlogged sites. Mean ramet height was significantly lower at the waterlogged sites than at the reference site, and was strongly correlated with mean ramet age. The distribution of B. nana in peat bogs is limited primarily by two demographic factors: the high mortality rate in older ramets, and the low rate of vegetative reproduction. Another contribution factor is that the proportion of older fertile ramets is low. The effects of fluctuations in the water table on distribution of B. nana are also discussed.  相似文献   

3.
  • Senescence is a puzzling phenomenon. Few convincing studies of senescence in perennial herbaceous plants exist. While ramets are known to senesce, whether senescence of bunchgrasses actually occurs is not clear.
  • In this study, we grew a set of plants of Elymus excelsus, a bunchgrass, to examine plant size, sexual reproduction and bud formation in individual plants in relation to their gradual ageing, in order to determine whether E. excelsus experiences senescence. We collected data in two consecutive years (2009 and 2010) from field samples of plants from 1 to 5 years old. Using regression models, we performed age‐related analyses of growth and reproduction parameters.
  • Our results showed that individual plant size (diameter, individual biomass), total biomass of ramets, number and biomass of reproductive ramets, percentage of ramets that were reproductive, reproductive allocation, over‐wintering buds and juvenile ramets all declined with age. However, vegetative growth (number and biomass of vegetative ramets) did not decrease with age.
  • Those plants that survived, dwindled in size as they aged. However, no plants shifted their resource allocation between growth and reproduction as they aged, so the shift in allocation did not account for the fall in size.
  相似文献   

4.
Clonal plants spreading horizontally and forming a network structure of ramets exhibit complex growth patterns to maximize resource uptake from the environment. They respond to spatial heterogeneity by changing their internode length or branching frequency. Ramets definitively root in the soil but stay interconnected for a varying period of time thus allowing an exchange of spatial and temporal information. We quantified the foraging response of clonal plants depending on the local soil quality sampled by the rooting ramet (i.e. the present information) and the resource variability sampled by the older ramets (i.e. the past information). We demonstrated that two related species, Potentilla reptans and P. anserina, responded similarly to the local quality of their environment by decreasing their internode length in response to nutrient-rich soil. Only P. reptans responded to resource variability by decreasing its internode length. In both species, the experience acquired by older ramets influenced the plastic response of new rooted ramets: the internode length between ramets depended not only on the soil quality locally sampled but also on the soil quality previously sampled by older ramets. We quantified the effect of the information perceived at different time and space on the foraging behavior of clonal plants by showing a non-linear response of the ramet rooting in the soil of a given quality. These data suggest that the decision to grow a stolon or to root a ramet at a given distance from the older ramet results from the integration of the past and present information about the richness and the variability of the environment.  相似文献   

5.

Background and aims

The main objectives of this study were to determine how the carbon age of fine root cellulose varies between stands, tree species, root diameter and soil depth. In addition, we also compared the carbon age of fine roots from soil cores of this study with reported values from the roots of the same diameter classes of ingrowth cores on the same sites.

Methods

We used natural abundance of 14C to estimate root carbon age in four boreal Norway spruce and Scots pine stands in Finland and Estonia.

Results

Age of fine root carbon was older in 1.5–2 mm diameter fine roots than in fine roots with <0.5 mm diameter, and tended to be older in mineral soil than in organic soil. Fine root carbon was older in the less fertile Finnish spruce stands (11–12 years) than in the more fertile Estonian stand (3 and 8 years), implying that roots may live longer in less fertile soil. We further observed that on one of our sites carbon in live fine roots with the 1.5–2 mm diameter was of similar C age (7–12 years) than in the ingrowth core roots despite the reported root age in the ingrowth cores – being not older than 2 years.

Conclusions

From this result, we conclude that new live roots may in some cases use old carbon reserves for their cellulose formation. Future research should be oriented towards improving our understanding of possible internal redistribution and uptake of C in trees.  相似文献   

6.
7.
Summary We investigated several ecological correlates of seed mass variation in the hemiparasitic, xylemtapping mistletoe, Phoradendron juniperinum. Mean seed mass varied two-fold among plants between the ages of 4 and 14 years old and was positively correlated with parental plant age. Both the standard deviation and the coefficient of variation in mean seed mass decreased with increasing plant age demonstrating that, on average, younger plants produced seed with more variable mass. Nitrogen concentrations (mg nitrogen per gram of seed) of both the seed and fruit (pericarp) were not correlated with mass or the age of the parent plant from which the seed was taken. However, the nitrogen content per seed (mg nitrogen per seed) was positively correlated with the mean seed dry mass and the age of the seed parent, suggesting that the carbon to nitrogen ratio of individual seeds remained relatively constant as seed mass increased and plants grew older. Seed germination ranged between 20% and 86% and was positively correlated with mass and parental plant age. Heavier seeds (seeds from older plants) also had the highest root radicle growth rates. Furthermore, the final root radicle length after 76 d of growth was positively correlated with seed dry mass. When grown on a medium containing an extract prepared from the host plant foliage, all seeds showed lower germination, grew more slowly and had shorter overall root radicles, but had significantly greater development of the haustorial disks (the holdfast which forms the host-parasite junction in Phoradendron) than seeds grown on a control medium. Our results suggest that, on average, seeds of greater mass produced by older plants have a greater total resource pool per propagule (fruit + seed). This resource pool may be important in conferring a greater potential for dispersal (fruit), survival, colonization, and establishment.  相似文献   

8.
Tree crowns typically cover the vast majority of the surface area of trees, but they are rarely considered in diversity surveys of epiphytic bryophytes and lichens, especially in temperate Europe. Usually only stems are sampled. We assessed the number of bryophyte and lichen species on stems and in crowns of 80 solitary sycamore maple trees (Acer pseudoplatanus) at six sites in wooded pastures in the northern Alps. The total number of species detected per tree ranged from 13 to 60 for bryophytes, from 25 to 67 for lichens, and from 42 to 104 for bryophytes and lichens considered together. At the tree level, 29 % of bryophyte and 61 % of lichen species were recorded only in the crown. Considering all sampled trees together, only 4 % of bryophyte, compared to 34 % of lichen species, were never recorded on the stem. Five out of 10 red-listed bryophyte species and 29 out of 39 red-listed lichen species were more frequent in crowns. The species richness detected per tree was unexpectedly high, whereas the proportion of exclusive crown species was similar to studies from forest trees. For bryophytes, in contrast to lichens, sampling several stems can give a good estimation of the species present at a site. However, frequency estimates may be highly biased for lichens and bryophytes if crowns are not considered. Our study demonstrates that tree crowns need to be considered in research on these taxa, especially in biodiversity surveys and in conservation tasks involving lichens and to a lesser degree also bryophytes.  相似文献   

9.

Key message

Clonal delineation at nuclear microsatellites and phenotypic traits showed high correspondence and revealed an important role of both sexual and clonal reproduction for stand genetic structure.

Abstract

Quaking aspen (Populus tremuloides Michx.) grows throughout the northern and central portions of North America. Reproduction occurs both sexually via seeds and clonally from root suckers. Clonal delineation using morphological/phenological traits, and more recently, highly variable nuclear microsatellites have shown considerable variation in the size of clonal assemblies, and the relative importance of sexual versus clonal reproduction across the species range. In order to provide reliable estimates of genet size (N/G; ramets per sampled genet) and genotypic diversity (G/N; genets/ramets), and to compare genetic and phenotypic clone delineation, we characterized 181 sampled stems (ramets) at seven nuclear microsatellites, and morphological and phenological traits from six clones (genet size ≥11). Genotypic diversity was moderate (G/N = 0.18) and within the range reported in other studies across North America. Multivariate statistics revealed a high correspondence between genetic and phenotypic clone delineation, both with and without predefined genetic groups (94.2 %, 81.7 %). Moderate average genet size (5.6 ramets per genet) and the occurrence of genetically distinct single-ramet genets surrounded by larger genets suggested intermediate levels of sexual reproduction contributing to the genetic structure of this stand. Significant differences among genets were found for phenological and morphological traits such as bark thickness and leaf shape. However, most clones showed no significant differences in diameter growth which was likely caused by poor drainage in this high clay soil that inhibited the expression of genetic differences in growth.
  相似文献   

10.
Clonal plants produce numerous ramets that can be distributed over a considerable area. Resources are translocated between ramets, especially when they occupy microsites of different quality, or places where leaves or roots cannot be deployed. It is common for a proportion of the ramets of clones and clonal fragments to lack roots. We conducted a greenhouse study using clonal fragments of Glechoma hederacea to examine the effects of differences in the number and position of rooted ramets on yield and plasticity of clonal fragments. We hypothesized that (1) mass of roots and root mass ratio would increase as the number of rooted ramets decreased, (2) plasticity in rooted ramets would buffer the clonal fragment against reduction in yield as the number of rooted ramets declined, (3) ramet plasticity in response to the absence of rooting, and the beneficial effects of this plasticity, would be greater when older ramets were rooted. The same yield was achieved in clonal fragments with only one out of four ramets rooted as in clonal fragments with all four of their ramets rooted, regardless of whether rooting was confined to older or younger ramets. Plasticity in biomass allocated to roots was greater in older rooted ramets succeeded by unrooted ramets than in younger rooted ramets preceded by unrooted ramets. Modular plasticity, involving both direct responses to local conditions, and indirect responses to the conditions experienced by connected modules, buffered performance against variation in rooting ability, enabling clonal fragments to maintain their yield and lateral expansion even when a high proportion of their ramets lacked roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号