首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
2.
Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential of these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention.  相似文献   

3.
NADPH oxidases are major sources of superoxide in the vascular wall. This study investigates the role of protein kinase C (PKC) in regulating gene expression of NADPH oxidases. Treatment of human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy 926 endothelial cells with phorbol 12-myristate 13-acetate (PMA) or phorbol 12,13-dibutyrate led to a PKC-dependent biphasic expression of the gp91phox homolog Nox4. A downregulation of Nox4 was observed at 6 h and an upregulation at 48 h after phorbol ester treatment. The early Nox4 downregulation was associated with a reduced superoxide production, whereas the late Nox4 upregulation was accompanied by a clear enhancement of superoxide. PMA activated the PKC isoforms alpha and epsilon in HUVEC and EA.hy 926 cells. Knockdown of PKCepsilon by siRNA prevented the early downregulation of Nox4, whereas knockdown of PKCalpha selectively abolished the late Nox4 upregulation. Vascular endothelial growth factor (VEGF), which activates PKCalpha but not PKCepsilon in HUVEC, increased Nox4 expression without the initial downregulation. VEGF-induced Nox4 upregulation was associated with an enhanced proliferation and angiogenesis of HUVEC. Both effects could be reduced by inhibition of NADPH oxidase. Thus, a selective inhibition/knockdown of PKCalpha may represent a novel therapeutic strategy for vascular disease.  相似文献   

4.
As the Mediterranean diet (and particularly olive oil) has been associated with bone health, we investigated the impact of extra virgin oil as a source of polyphenols on bone metabolism. In that purpose sham-operated (SH) or ovariectomized (OVX) mice were subjected to refined or virgin olive oil. Two supplementary OVX groups were given either refined or virgin olive oil fortified with vitamin D3, to assess the possible synergistic effects with another liposoluble nutrient. After 30 days of exposure, bone mineral density and gene expression were evaluated. Consistent with previous data, ovariectomy was associated with increased bone turnover and led to impaired bone mass and micro-architecture. The expression of oxidative stress markers were enhanced as well. Virgin olive oil fortified with vitamin D3 prevented such changes in terms of both bone remodeling and bone mineral density. The expression of inflammation and oxidative stress mRNA was also lower in this group. Overall, our data suggest a protective impact of virgin olive oil as a source of polyphenols in addition to vitamin D3 on bone metabolism through improvement of oxidative stress and inflammation.  相似文献   

5.
The death rate of Salmonella enteritidis was always faster in mayonnaise made with extra virgin olive oil than in that prepared from blended olive or sunflower oils. The acidity and the phenolic profiles of these oils differed significantly. The most acidic oils (0·5% oleic acid), the extra virgin oils, also had the most complex phenolic profiles. The acidity of sunflower and blended olive oil was 0·2% and 0·4% respectively.  相似文献   

6.
Pancreatic amyloid deposits of amylin are a hallmark of Type II diabetes and considerable evidence indicates that amylin oligomers are cytotoxic to β-cells. Many efforts are presently spent to find out naturally occurring molecules, or to design synthetic ones, able to hinder amylin aggregation or to protect cells against aggregate cytotoxicity. In this context, a protective effect of some polyphenols against amyloid cytotoxicity was reported. Actually dietary polyphenols are endowed with multiple health benefits, and extra virgin olive oil is attracting increasing interest as a source of these substances. Here, we investigated the effects on amylin aggregation and cytotoxicity of the secoiridoid oleuropein aglycon, the main phenolic component of extra virgin olive oil. We found that oleuropein, when present during the aggregation of amylin, consistently prevented its cytotoxicity to RIN-5F pancreatic β-cells, as determined by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide test and caspase-3 activity assay. A lack of interaction with the cell membrane of amylin aggregates grown in the presence of oleuropein was shown by fluorescence microscopy and synthetic lipid vesicle permeabilization. Moreover, our ThT assay, circular dichroism analysis and electron microscopy images suggested that oleuropein interferes with amylin aggregation, resulting in a different path skipping the formation of toxic pre-fibrillar aggregates. These results provide a molecular basis for some of the benefits potentially coming from extra virgin olive oil consumption and pave the way to further studies on the possible pharmacological use of oleuropein to prevent or to slow down the progression of type II diabetes.  相似文献   

7.
Histone deacetylase (HDAC) inhibitors are known to suppress abnormal development of blood vessels. Angiogenic activity in endothelial cells depends upon NADPH oxidase 4 (Nox4)‐dependent redox signalling. We set out to study whether the HDAC inhibitor trichostatin A (TSA) affects Nox4 expression and angiogenesis. Nox4 expression was measured by real time PCR and Western blot analysis in endothelial cells. Hydrogen peroxide (H2O2) was measured by amplex® red assay in endothelial cells. Nox4 was knocked down by Nox4 shRNA. In vitro angiogenic activities such migration and tubulogenesis were assessed using wound healing and Matrigel assays, respectively. In vivo angiogenic activity was assessed using subcutaneous sponge assay in C57Bl/6 and Nox4‐deficient mice. Trichostatin A reduced Nox4 expression in a time‐ and concentration‐dependent manner. Both TSA and Nox4 silencing decreased Nox4 protein and H2O2. Mechanistically, TSA reduced expression of Nox4 via ubiquitination of p300‐ histone acetyltransferase (p300‐HAT). Thus, blocking of the ubiquitination pathway using an inhibitor of ubiquitin‐activating enzyme E1 (PYR‐41) prevented TSA inhibition of Nox4 expression. Trichostatin A also reduced migration and tube formation, and these effects were not observed in Nox4‐deficient endothelial cells. Finally, transforming growth factor beta1 (TGFβ1) enhanced angiogenesis in sponge model in C57BL/6 mice. This response to TGFβ1 was substantially reduced in Nox4‐deficient mice. Similarly intraperitoneal infusion of TSA (1 mg/kg) also suppressed TGFβ1‐induced angiogenesis in C57BL/6 mice. Trichostatin A reduces Nox4 expression and angiogenesis via inhibition of the p300‐HAT‐dependent pathway. This mechanism might be exploited to prevent aberrant angiogenesis in diabetic retinopathy, complicated vascular tumours and malformations.  相似文献   

8.
We assessed the effects of Picual and Arbequina olive oil, rich and poor in polyphenols, respectively, on plasma lipid and glucose metabolism, hepatic fat content, and the hepatic proteome in female Apoe-/- mice. Both olive oils increased hepatic fat content and adipophilin levels (p < 0.05), though Picual olive oil significantly decreased plasma triglycerides (p < 0.05). Proteomics identified a range of hepatic antioxidant enzymes that were differentially regulated by both olive oils as compared with palm oil. We found a clear association between olive oil consumption and differential regulation of adipophilin and betaine homocysteine methyl transferase as modulators of hepatic triglyceride metabolism. Therefore, our "systems biology" approach revealed hitherto unrecognized insights into the triglyceride-lowering and anti-atherogenic mechanisms of extra virgin olive oils, wherein the up-regulation of a large array of anti-oxidant enzymes may offer sufficient protection against lesion development and diminish oxidative stress levels instigated by hepatic steatosis.  相似文献   

9.
Nicotine adenine dinucleotide phosphate (NADPH) oxidase (Nox) complexes are the main sources of reactive oxygen species (ROS) formation in the vessel wall. We have used DNA microarray, real-time PCR and Western blot to demonstrate that the subunit Nox4 is the major Nox isoform in primary human endothelial cells; we also found high levels of NADPH oxidase subunit p22phox expression. Nox4 was localized by laser scanning confocal microscopy within the cytoplasm of endothelial cells. Endothelial Nox4 overexpression enhanced superoxide anion formation and phosphorylation of p38 MAPK. Nox4 down-regulation by shRNA has in contrast to TGF-β no effect on p38 MAPK phosphorylation. We conclude that Nox4 is the major Nox isoform in human endothelial cells, and forms an active complex with p22phox. The Nox4-containing complex mediates formation of reactive oxygen species and p38 MAPK activation. This is a novel mechanism of redox-sensitive signaling in human endothelial cells.  相似文献   

10.
Vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS) play critical roles in vascular physiology and pathophysiology. We have demonstrated previously that NADPH oxidase-derived ROS are required for VEGF-mediated migration and proliferation of endothelial cells. The goal of this study was to determine the extent to which VEGF signaling is coupled to NADPH oxidase activity. Human umbilical vein endothelial cells and/or human coronary artery endothelial cells were transfected with short interfering RNA against the p47(phox) subunit of NADPH oxidase, treated in the absence or presence of VEGF, and assayed for signaling, gene expression, and function. We show that NADPH oxidase activity is required for VEGF activation of phosphoinositide 3-kinase-Akt-forkhead, and p38 MAPK, but not ERK1/2 or JNK. The permissive role of NADPH oxidase on phosphoinositide 3-kinase-Akt-forkhead signaling is mediated at post-VEGF receptor levels and involves the nonreceptor tyrosine kinase Src. DNA microarrays revealed the existence of two distinct classes of VEGF-responsive genes, one that is ROS-dependent and another that is independent of ROS levels. VEGF-induced, thrombomodulin-dependent activation of protein C was dependent on NADPH oxidase activity, whereas VEGF-induced decay-accelerating factor-mediated protection of endothelial cells against complement-mediated lysis was not. Taken together, these findings suggest that NADPH oxidase-derived ROS selectively modulate some but not all the effects of VEGF on endothelial cell phenotypes.  相似文献   

11.
Sepsis-mediated endothelial Angiopoeitin-2 (Ang2) signaling may contribute to microvascular remodeling in the developing lung. The mechanisms by which bacterial cell wall components such as LPS mediate Ang2 signaling in human pulmonary microvascular endothelial cells (HPMECs) remain understudied. In HPMEC, LPS-induced Ang2, Tie2, and VEGF-A protein expression was preceded by increased superoxide formation. NADPH oxidase 2 (Nox2) inhibition, but not Nox4 or Nox1 inhibition, attenuated LPS-induced superoxide formation and Ang2, Tie2, and VEGF-A expression. Nox2 silencing, but not Nox4 or Nox1 silencing, inhibited LPS-mediated inhibitor of κ-B kinase β (IKKβ) and p38 phosphorylation and nuclear translocation of NF-κB and AP-1. In HPMECs, LPS increased the number of angiogenic tube and network formations in Matrigel by >3-fold. Conditioned media from LPS-treated cells also induced angiogenic tube and network formation in the presence of Toll-like receptor 4 blockade but not in the presence of Ang2 and VEGF blockade. Nox2 inhibition or conditioned media from Nox2-silenced cells attenuated LPS-induced tube and network formation. Ang2 and VEGF-A treatment rescued angiogenesis in Nox2-silenced cells. We propose that Nox2 regulates LPS-mediated Ang2-dependent autocrine angiogenesis in HPMECs through the IKKβ/NF-κB and MAPK/AP-1 pathways.  相似文献   

12.
The claimed beneficial effects of the Mediterranean diet include prevention of several age-related dysfunctions including neurodegenerative diseases and Alzheimer-like pathology. These effects have been related to the protection against cognitive decline associated with aging and disease by a number of polyphenols found in red wine and extra virgin olive oil. The double transgenic TgCRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 1.5 and 4, and age-matched wild type control mice were used to examine in vivo the effects of 8 weeks dietary supplementation of oleuropein aglycone (50 mg/kg of diet), the main polyphenol found in extra virgin olive oil. We report here that dietary supplementation of oleuropein aglycone strongly improves the cognitive performance of young/middle-aged TgCRND8 mice, a model of amyloid-ß deposition, respect to age-matched littermates with un-supplemented diet. Immunofluorescence analysis of cerebral tissue in oleuropein aglycone-fed transgenic mice showed remarkably reduced ß-amyloid levels and plaque deposits, which appeared less compact and “fluffy”; moreover, microglia migration to the plaques for phagocytosis and a remarkable reduction of the astrocyte reaction were evident. Finally, oleuropein aglycone-fed mice brain displayed an astonishingly intense autophagic reaction, as shown by the increase of autophagic markers expression and of lysosomal activity. Data obtained with cultured cells confirmed the latter evidence, suggesting mTOR regulation by oleuropein aglycone. Our results support, and provide mechanistic insights into, the beneficial effects against Alzheimer-associated neurodegeneration of a polyphenol enriched in the extra virgin olive oil, a major component of the Mediterranean diet.  相似文献   

13.
14.
Herein, we investigate whether the NADPH oxidase might be playing a key role in the degree of oxidative stress in the senescence-accelerated mouse prone-8 (SAM-P8). To this end, the activity and expression of the NADPH oxidase, the ratio of glutathione and glutathione disulfides (GSH/GSSG), and the levels of malonyl dialdehyde (MDA) and nitrotyrosine (NT) were determined in renal tissue from SAM-P8 mice at the age of 1 and 6 months. The senescence-accelerated-resistant mouse (SAM-R1) was used as control. At the age of 1 month, NADPH oxidase activity and Nox2 protein expression were higher in SAM-P8 than in SAM-R1 mice. However, we found no differences in the GSH/GSSG ratio, MDA, NT, and Nox4 levels between both groups of animals. At the age of 6 months, SAM-R1 mice in comparison to SAM-P8 mice showed an increase in NADPH oxidase activity, which is associated with higher levels of NT and increased Nox4 and Nox2 expression levels. Furthermore, we found oxidative stress hallmarks including depletion in GSH/GSSG ratio and increase in MDA levels in the kidney of SAM-P8 mice. Finally, NADPH oxidase activity positively correlated with Nox2 expression in all the animals (r?=?0.382, P?<?0.05). Taken together, our data allow us to suggest that an increase in NADPH oxidase activity might be an early hallmark to predict future oxidative stress in renal tissue during the aging process that takes place in SAM-P8 mice.  相似文献   

15.
Interleukin-1β (IL-1β) activates the production of reactive oxygen species (ROS) and secretion of MMPs as well as chondrocyte apoptosis. Those events lead to matrix breakdown and are key features of osteoarthritis (OA). We confirmed that in human C-20/A4 chondrocytes the NADPH oxidase Nox4 is the main source of ROS upon IL-1β stimulation. Since heme molecules are essential for the NADPH oxidase maturation and activity, we therefore investigated the consequences of the modulation of Heme oxygenase-1 (HO-1), the limiting enzyme in heme catabolism, on the IL-1β signaling pathway and more specifically on Nox4 activity. Induction of HO-1 expression decreased dramatically Nox4 activity in C-20/A4 and HEK293 T-REx™ Nox4 cell lines. Unexpectedly, this decrease was not accompanied by any change in the expression, the subcellular localization or the maturation of Nox4. In fact, the inhibition of the heme synthesis by succinylacetone rather than heme catabolism by HO-1, led to a confinement of the Nox4/p22phox heterodimer in the endoplasmic reticulum with an absence of redox differential spectrum highlighting an incomplete maturation. Therefore, the downregulation of Nox4 activity by HO-1 induction appeared to be mediated by carbon monoxide (CO) generated from the heme degradation process. Interestingly, either HO-1 or CO caused a significant decrease in the expression of MMP-1 and DNA fragmentation of chondrocytes stimulated by IL-1β. These results all together suggest that a modulation of Nox4 activity via heme oxygenase-1 may represent a promising therapeutic tool in osteoarthritis.  相似文献   

16.
The Mediterranean diet is associated with a lower incidence of chronic degenerative diseases and higher life expectancy. These health benefits have been partially attributed to the dietary consumption of extra virgin olive oil (EVOO) by Mediterranean populations, and more specifically the phenolic compounds naturally present in EVOO. Studies involving humans and animals (in vivo and in vitro) have demonstrated that olive oil phenolic compounds have potentially beneficial biological effects resulting from their antimicrobial, antioxidant and anti-inflammatory activities. This paper summarizes current knowledge on the biological activities of specific olive oil phenolic compounds together with information on their concentration in EVOO, bioavailability and stability over time.  相似文献   

17.
The influence on the lipid profile and lipid peroxidation in rabbit-liver mitochondria exerted by different edible oils high in oleic acid but different non-glyceride phenolic fractions was studied. High-phenolic virgin olive oil from the variety "Picual", the same oil submitted to an exhaustive process of washing to eliminate the phenolic fraction without altering the lipid profile and high-oleic sunflower oil (poor in phenolic compounds) were added to rabbit diets. The results reveal the importance of the different oleic: linoleic ratio of the lipid sources on the lipid profile of mitochondrial membranes. This is highlighted by the greater proportion of saturated fatty acids and the lower content in oleic acid (p < 0.05) shown by the rabbits fed on high-oleic sunflower oil. The group fed on the fat rich in phenolics exhibited the highest level of antioxidants (alpha-tocopherol, ubiquinone 10) and the highest activity of glutathione peroxidase as well as the lowest content in hydroperoxides and TBARS. The study provides evidences in vivo about the considerable antioxidant capacity of the phenolic fraction of virgin olive oil in rabbit-liver mitochondria and the important role that this non-glyceride fraction can play in the overall antioxidant benefits attributed to this oil.  相似文献   

18.
The anti-inflammatory peptide annexin-1 binds to formyl peptide receptors (FPR) but little is known about its mechanism of action in the vasculature. Here we investigate the effect of annexin peptide Ac2-26 on NADPH oxidase activity induced by tumour necrosis factor alpha (TNFα) in human endothelial cells. Superoxide release and intracellular reactive oxygen species (ROS) production from NADPH oxidase was measured with lucigenin-enhanced chemiluminescence and 2′,7′-dichlorodihydrofluorescein diacetate, respectively. Expression of NADPH oxidase subunits and intracellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) were determined by real-time PCR and Western blot analysis. Promoter activity of nuclear factor kappa B (NFκB) was measured by luciferase activity assay. TNFα stimulated NADPH-dependent superoxide release, total ROS formation and expression of ICAM-1and VCAM-1. Pre-treatment with N-terminal peptide of annexin-1 (Ac2-26, 0.5–1.5 µM) reduced all these effects, and the inhibition was blocked by the FPRL-1 antagonist WRW4. Furthermore, TNFα-induced NFκB promoter activity was attenuated by both Ac2-26 and NADPH oxidase inhibitor diphenyliodonium (DPI). Surprisingly, Nox4 gene expression was reduced by TNFα whilst expression of Nox2, p22phox and p67phox remained unchanged. Inhibition of NADPH oxidase activity by either dominant negative Rac1 (N17Rac1) or DPI significantly attenuated TNFα-induced ICAM-1and VCAM-1 expression. Ac2-26 failed to suppress further TNFα-induced expression of ICAM-1 and VCAM-1 in N17Rac1-transfected cells. Thus, Ac2-26 peptide inhibits TNFα-activated, Rac1-dependent NADPH oxidase derived ROS formation, attenuates NFκB pathways and ICAM-1 and VCAM-1 expression in endothelial cells. This suggests that Ac2-26 peptide blocks NADPH oxidase activity and has anti-inflammatory properties in the vasculature which contributes to modulate in reperfusion injury inflammation and vascular disease.  相似文献   

19.
Modified low-density lipoprotein (LDL) induces reactive oxygen species (ROS) production by vascular cells. It is unknown if specific oxidized components in these LDL particles such as oxidized-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (ox-PAPC) can stimulate ROS production. Bovine aortic endothelial cells (BAEC) were incubated with ox-PAPC (50 microg/ml). At 4 h, ox-PAPC significantly enhanced the rate of O2- production. Pretreatment of BAEC in glucose-free Dulbecco's modified Eagle's medium plus 10 mM 2-deoxyglucose (2-DOG), the latter being an antimetabolite that blocks NADPH production by the pentose shunt, significantly reduced the rate of O2- production. The intensity of NAD(P)H autofluorescence decreased by 28 +/- 12% in BAEC incubated with ox-PAPC compared to untreated cells, with a further decrease in the presence of 2-DOG. Ox-PAPC also increased Nox4 mRNA expression by 2.4-fold +/- 0.1 while pretreatment of BAEC with the small interfering RNA (siNox4) attenuated Nox4 RNA expression. Ox-PAPC further reduced the level of glutathione while pretreatment with apocynin (100 microM) restored the GSH level (control = 22.54 +/- 0.23, GSH = 18.06 +/- 0.98, apocynin = 22.55 +/- 0.60, ox-PAPC + apocynin = 21.17 +/- 0.36 nmol/10(6) cells). Treatment with ox-PAPC also increased MMP-2 mRNA expression accompanied by a 1.5-fold increase in MMP-2 activity. Ox-PAPC induced vascular endothelial OO2-(.) production that appears to be mediated largely by NADPH oxidase activity.  相似文献   

20.
Vascular complications, a major cause of morbidity and mortality in diabetic patients, are related to hyperglycemia-induced oxidative stress. Previously, we reported that rosiglitazone (RSG) attenuated vascular expression and activity of NADPH oxidases in diabetic mice. The mechanisms underlying these effects remain to be elucidated. We hypothesized that RSG acts directly on endothelial cells to modulate vascular responses in diabetes. To test this hypothesis, human aortic endothelial cells (HAECs) were exposed to normal glucose (NG; 5.6 mmol/l) or high glucose (HG; 30 mmol/l) concentrations. Select HAEC monolayers were treated with RSG, caffeic acid phenethyl ester (CAPE), diphenyleneiodonium (DPI), small interfering (si)RNA (to NF-κB/p65 or Nox4), or Tempol. HG increased the expression and activity of the NADPH oxidase catalytic subunit Nox4 but not Nox1 or Nox2. RSG attenuated HG-induced NF-κB/p65 phosphorylation, nuclear translocation, and binding to the Nox4 promoter. Inhibiting NF-κB with CAPE or siNF-κB/p65 also reduced HG-induced Nox4 expression and activity. HG-induced H(2)O(2) production was attenuated by siRNA-mediated knockdown of Nox4, and HG-induced HAEC monocyte adhesion was attenuated by treatment with RSG, DPI, CAPE, or Tempol. These results indicate that HG exposure stimulates HAEC NF-κB activation, Nox4 expression, and H(2)O(2) production and that RSG attenuates HG-induced oxidative stress and subsequent monocyte-endothelial interactions by attenuating NF-κB/p65 activation and Nox4 expression. This study provides novel insights into mechanisms by which the thiazolidinedione peroxisome proliferator-activated receptor-γ ligand RSG favorably modulates endothelial responses in the diabetic vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号