首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Innate immune receptors detect microbial pathogens and subsequently activate adaptive immune responses to combat pathogen invasion. MyD88 is a key adaptor molecule in both Toll-like receptor (TLR) and IL-1 receptor superfamily signaling pathways. This is illustrated by the fact that human individuals carrying rare, naturally occurring MYD88 point mutations suffer from reoccurring life-threatening infections. Here we analyzed the functional properties of six reported non-synonymous single nucleotide polymorphisms of MYD88 in an in vitro cellular system. Two variants found in the MyD88 death domain, S34Y and R98C, showed severely reduced NF-κB activation due to reduced homo-oligomerization and IRAK4 interaction. Structural modeling highlights Ser-34 and Arg-98 as residues important for the assembly of the Myddosome, a death domain (DD) post-receptor complex involving the DD of MyD88, IRAK4, and IRAK2 or IRAK1. Using S34Y and R98C as functional probes, our data show that MyD88 homo-oligomerization and IRAK4 interaction is modulated by the MyD88 TIR and IRAK4 kinase domain, demonstrating the functional importance of non-DD regions not observed in a recent Myddosome crystal structure. The differential interference of S34Y and R98C with some (IL-1 receptor, TLR2, TLR4, TLR5, and TLR7) but not all (TLR9) MyD88-dependent signaling pathways also suggests that receptor specificities exist at the level of the Myddosome. Given their detrimental effect on signaling, it is not surprising that our epidemiological analysis in several case-control studies confirms that S34Y and R98C are rare variants that may drastically contribute to susceptibility to infection in only few individuals.  相似文献   

2.
IRAK4 is responsible for initiating signaling from Toll-like receptors (TLRs) and members of the IL-1/18 receptor family. Kinase-inactive knock-ins and targeted deletions of IRAK4 in mice cause reductions in TLR induced pro-inflammatory cytokines and these mice are resistant to various models of arthritis. Herein we report the identification and optimization of a series of potent IRAK4 inhibitors. Representative examples from this series showed excellent selectivity over a panel of kinases, including the kinases known to play a role in TLR-mediated signaling. The compounds exhibited low nM potency in LPS- and R848-induced cytokine assays indicating that they are blocking the TLR signaling pathway. A key compound (26) from this series was profiled in more detail and found to have an excellent pharmaceutical profile as measured by predictive assays such as microsomal stability, TPSA, solubility, and c log P. However, this compound was found to afford poor exposure in mouse upon IP or IV administration. We found that removal of the ionizable solubilizing group (32) led to increased exposure, presumably due to increased permeability. Compounds 26 and 32, when dosed to plasma levels corresponding to ex vivo whole blood potency, were shown to inhibit LPS-induced TNFα in an in vivo murine model. To our knowledge, this is the first published in vivo demonstration that inhibition of the IRAK4 pathway by a small molecule can recapitulate the phenotype of IRAK4 knockout mice.  相似文献   

3.
Cigarette smoke is the major risk factor associated with the development of chronic obstructive pulmonary disease and alters expression of proteolytic enzymes that contribute to disease pathology. Previously, we reported that smoke exposure leads to the induction of matrix metalloproteinase-1 (MMP-1) through the activation of ERK1/2, which is critical to the development of emphysema. To date, the upstream signaling pathway by which cigarette smoke induces MMP-1 expression has been undefined. This study demonstrates that cigarette smoke mediates MMP-1 expression via activation of the TLR4 signaling cascade. In vitro cell culture studies demonstrated that cigarette smoke-induced MMP-1 was regulated by TLR4 via MyD88/IRAK1. Blockade of TLR4 or inhibition of IRAK1 prevented cigarette smoke induction of MMP-1. Mice exposed to acute levels of cigarette smoke exhibited increased TLR4 expression. To further confirm the in vivo relevance of this signaling pathway, rabbits exposed to acute cigarette smoke were found to have elevated TLR4 signaling and subsequent MMP-1 expression. Additionally, lungs from smokers exhibited elevated TLR4 and MMP-1 levels. Therefore, our data indicate that TLR4 signaling, through MyD88 and IRAK1, plays a predominant role in MMP-1 induction by cigarette smoke. The identification of the TLR4 pathway as a regulator of smoke-induced protease production presents a series of novel targets for future therapy in chronic obstructive pulmonary disease.  相似文献   

4.
Signal transduction by Toll-like receptor 2 (TLR2) and TLR4 requires the adaptors MyD88 and Mal (MyD88 adaptor-like) and serine/threonine kinases, interleukin-1 receptor-associated kinases IRAK1 and IRAK4. We have found that both IRAK1 and IRAK4 can directly phosphorylate Mal. In addition, co-expression of Mal with either IRAK resulted in depletion of Mal from cell lysates. This is likely to be due to Mal phosphorylation by the IRAKs because kinase-inactive forms of either IRAK had no effect. Furthermore, lipopolysaccharide stimulation resulted in ubiquitination and degradation of Mal, which was inhibited using an IRAK1/4 inhibitor or by knocking down expression of IRAK1 and IRAK4. MyD88 is not a substrate for either IRAK and did not undergo degradation. We therefore conclude that Mal is a substrate for IRAK1 and IRAK4 with phosphorylation promoting ubiquitination and degradation of Mal. This process may serve to negatively regulate signaling by TLR2 and TLR4.  相似文献   

5.
6.
7.
8.
To determine if myeloid differentiation factor 88 (MyD88), which is necessary for signaling by most TLRs and IL-1Rs, is necessary for control of Pneumocystis infection, MyD88-deficient and wild-type mice were infected with Pneumocystis by exposure to infected seeder mice and were followed for up to 106 days. MyD88-deficient mice showed clearance of Pneumocystis and development of anti-Pneumocystis antibody responses with kinetics similar to wild-type mice. Based on expression levels of select genes, MyD88-deficient mice developed immune responses similar to wild-type mice. Thus, MyD88 and the upstream pathways that rely on MyD88 signaling are not required for control of Pneumocystis infection.  相似文献   

9.
In this work we describe the production of site-specific biotinylated human myeloid differentiation factor 88 (MyD88). A vector containing a coding sequence for a peptide derived from the carboxyl terminus of the Klebsiella pneumoniae oxalacetate decarboxylase α subunit was used to allow expression and biotinylation of MyD88 in Drosophila melanogaster Schneider 2 cell cytoplasm. As estimated by a comparison of Schneider 2 lysate with standard protein, the maximum expression level was 1.3 μg 107 cells−1. About 4 mg of biotinylated protein was purified by affinity chromatography on monomeric avidin from a I-L culture. Exogenous biotin added to the culture medium increased the biotinylation efficiency of the expressed protein. Biotinylated MyD88 produced in Drosophila cells was able to precipitate recombinant MyD88 expressed in human embryonic kidney cells. The stable expression of MyD88 in Drosophila Schneider 2 cells offers a convenient and attractive method for large-scale production, which may be required to clarify the role of MyD88 in the inflammatory response. Moreover, site-specific biotinylation of MyD88 provides a useful tag for interaction assays where high sensitivity is required.  相似文献   

10.
Myeloid differentiation protein 88 (MyD88) is a key signaling adapter in Toll-like receptor (TLR) signaling. MyD88 is also one of the most polymorphic adapter proteins. We screened the reported nonsynonymous coding mutations in MyD88 to identify variants with altered function. In reporter assays, a death domain variant, S34Y, was found to be inactive. Importantly, in reconstituted macrophage-like cell lines derived from knock-out mice, MyD88 S34Y was severely compromised in its ability to respond to all MyD88-dependent TLR ligands. Unlike wild-type MyD88, S34Y is unable to form distinct foci in the cells but is present diffused in the cytoplasm. We observed that IRAK4 co-localizes with MyD88 in these aggregates, and thus these foci appear to be "Myddosomes." The MyD88 S34Y loss-of-function mutant demonstrates how proper cellular localization of MyD88 to the Myddosome is a feature required for MyD88 function.  相似文献   

11.
Development of chemoresistance is a major impediment to successful treatment of patients suffering from epithelial ovarian carcinoma (EOC). Among various molecular factors, presence of MyD88, a component of TLR-4/MyD88 mediated NF-κB signaling in EOC tumors is reported to cause intrinsic paclitaxel resistance and poor survival. However, 50–60% of EOC patients do not express MyD88 and one-third of these patients finally relapses and dies due to disease burden. The status and role of NF-κB signaling in this chemoresistant MyD88negative population has not been investigated so far. Using isogenic cellular matrices of cisplatin, paclitaxel and platinum-taxol resistant MyD88negative A2780 ovarian cancer cells expressing a NF-κB reporter sensor, we showed that enhanced NF-κB activity was required for cisplatin but not for paclitaxel resistance. Immunofluorescence and gel mobility shift assay demonstrated enhanced nuclear localization of NF-κB and subsequent binding to NF-κB response element in cisplatin resistant cells. The enhanced NF-κB activity was measurable from in vivo tumor xenografts by dual bioluminescence imaging. In contrast, paclitaxel and the platinum-taxol resistant cells showed down regulation in NF-κB activity. Intriguingly, silencing of MyD88 in cisplatin resistant and MyD88positive TOV21G and SKOV3 cells showed enhanced NF-κB activity after cisplatin but not after paclitaxel or platinum-taxol treatments. Our data thus suggest that NF-κB signaling is important for maintenance of cisplatin resistance but not for taxol or platinum-taxol resistance in absence of an active TLR-4/MyD88 receptor mediated cell survival pathway in epithelial ovarian carcinoma.  相似文献   

12.
Interleukin-1 receptor associated kinase 4 (IRAK4) has been implicated in IL-1R and TLR based signaling. Therefore selective inhibition of the kinase activity of this protein represents an attractive target for the treatment of inflammatory diseases. Medicinal chemistry optimization of high throughput screening (HTS) hits with the help of structure based drug design led to the identification of orally-bioavailable quinazoline based IRAK4 inhibitors with excellent pharmacokinetic profile and kinase selectivity. These highly selective IRAK4 compounds show activity in vivo via oral dosing in a TLR7 driven model of inflammation.  相似文献   

13.
The effect of a series of toll-like receptor (TLR) ligands on the production of nitric oxide (NO) in mouse B1 cells was examined by using CD5+ IgM+ WEHI 231 cells. The stimulation with a series of TLR ligands, which were Pam3Csk4 for TLR1/2, poly I:C for TLR3, lipopolysaccharide (LPS) for TLR4, imiquimod for TLR7 and CpG DNA for TLR9, resulted in enhanced NO production via augmented expression of an inducible type of NO synthase (iNOS). LPS was most potent for the enhancement of NO production, followed by poly I:C and Pam3Csk4. Imiquimod and CpG DNA led to slight NO production. The LPS-induced NO production was dependent on MyD88-dependent pathway consisting of nuclear factor (NF)-κB and a series of mitogen-activated protein kinases (MAPKs). Further, it was also dependent on the MyD88-independent pathway consisting of toll-IL-1R domain-containing adaptor-inducing IFN-β (TRIF) and interferon regulatory factor (IRF)-3. Physiologic peritoneal B1 cells also produced NO via the iNOS expression in response to LPS. The immunological significance of TLR ligands-induced NO production in B1 cells is discussed.  相似文献   

14.
The identification of small molecule inhibitors of IRAK4 for the treatment of autoimmune diseases has been an area of intense research. We discovered novel 4,6-diaminonicotinamides which potently inhibit IRAK4. Optimization efforts were aided by X-ray crystal structures of inhibitors bound to IRAK4. Structure activity relationship (SAR) studies led to the identification of compound 29 which exhibited sub-micromolar potency in a LTA stimulated cellular assay.  相似文献   

15.
We previously characterized nucleoredoxin (NRX) as a negative regulator of the Wnt signaling pathway through Dishevelled (Dvl). We perform a comprehensive search for other NRX-interacting proteins and identify Flightless-I (Fli-I) as a novel NRX-binding partner. Fli-I binds to NRX and other related proteins, such as Rod-derived cone viability factor (RdCVF), whereas Dvl binds only to NRX. Endogenous NRX and Fli-I in vivo interactions are confirmed. Both NRX and RdCVF link Fli-I with myeloid differentiation primary response gene (88) (MyD88), an important adaptor protein for innate immune response. NRX and RdCVF also potentiate the negative effect of Fli-I upon lipopolysaccharide-induced activation of NF-κB through the Toll-like receptor 4/MyD88 pathway. Embryonic fibroblasts derived from NRX gene-targeted mice show aberrant NF-κB activation upon lipopolysaccharide stimulation. These results suggest that the NRX subfamily of proteins forms a link between MyD88 and Fli-I to mediate negative regulation of the Toll-like receptor 4/MyD88 pathway.  相似文献   

16.
Despite the presence of toll like receptor (TLR) expression in conventional TCRαβ T cells, the direct role of TLR signaling via myeloid differentiation factor 88 (MyD88) within T lymphocytes on graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT) remains unknown. In the allo-SCT model of C57BL/6 (H-2b) → B6D2F1 (H-2b/d), recipients received transplants of wild type (WT) T-cell-depleted (TCD) bone marrow (BM) and splenic T cells from either WT or MyD88 deficient (MyD88KO) donors. Host-type (H-2d) P815 mastocytoma or L1210 leukemia cells were injected either subcutaneously or intravenously to generate a GVHD/GVL model. Allogeneic recipients of MyD88KO T cells demonstrated a greater tumor growth without attenuation of GVHD severity. Moreover, GVHD-induced GVL effect, caused by increasing the conditioning intensity was also not observed in the recipients of MyD88KO T cells. In vitro, the absence of MyD88 in T cells resulted in defective cytolytic activity to tumor targets with reduced ability to produce IFN-γ or granzyme B, which are known to critical for the GVL effect. However, donor T cell expansion with effector and memory T-cell differentiation were more enhanced in GVHD hosts of MyD88KO T cells. Recipients of MyD88KO T cells experienced greater expansion of Foxp3- and IL4-expressing T cells with reduced INF-γ producing T cells in the spleen and tumor-draining lymph nodes early after transplantation. Taken together, these results highlight a differential role for MyD88 deficiency on donor T-cells, with decreased GVL effect without attenuation of the GVHD severity after experimental allo-SCT.  相似文献   

17.
18.
MyD88 couples the activation of the Toll-like receptors and interleukin-1 receptor superfamily with intracellular signaling pathways. Upon ligand binding, activated receptors recruit MyD88 via its Toll-interleukin-1 receptor domain. MyD88 then allows the recruitment of the interleukin-1 receptor-associated kinases (IRAKs). We performed a site-directed mutagenesis of MyD88 residues, conserved in death domains of the homologous FADD and Pelle proteins, and analyzed the effect of the mutations on MyD88 signaling. Our studies revealed that mutation of residues 52 (MyD88E52A) and 58 (MyD88Y58A) impaired recruitment of both IRAK1 and IRAK4, whereas mutation of residue 95 (MyD88K95A) only affected IRAK4 recruitment. Since all MyD88 mutants were defective in signaling, recruitment of both IRAKs appeared necessary for activation of the pathway. Moreover, overexpression of a green fluorescent protein (GFP)-tagged mini-MyD88 protein (GFP-MyD88-(27–72)), comprising the Glu52 and Tyr58 residues, interfered with recruitment of both IRAK1 and IRAK4 by MyD88 and suppressed NF-κB activation by the interleukin-1 receptor but not by the MyD88-independent TLR3. GFP-MyD88-(27–72) exerted its effect by titrating IRAK1 and suppressing IRAK1-dependent NF-κB activation. These experiments identify novel residues of MyD88 that are crucially involved in the recruitment of IRAK1 and IRAK4 and in downstream propagation of MyD88 signaling.MyD88 was first discovered during studies addressing the differentiation of mouse myeloid cells in response to growth-inhibitory stimuli (1). Subsequent investigations revealed that MyD88 possesses a modular organization (2), with an amino-terminal death domain (DD),3 found in proteins involved in cell death (3, 4), and a carboxyl-terminal Toll-interleukin-1 receptor (TIR) domain, present in the intracytoplasmic tail of receptors belonging to the Toll-like receptor (TLR)/interleukin-1 receptor (IL-1R) superfamily (5). MyD88 also has an intermediate domain (ID) that is crucial in TLR signaling due to its interaction with IRAK4 (6). The role of MyD88 as a signal transducer was first shown in the pathways triggered by the activation of IL-1R (7, 8) and TLR4 (9). Further studies showed that all TLRs, with the sole exception of TLR3, and the IL-1R family utilize the adaptor protein MyD88 to initiate their signaling pathway (10).By virtue of its modular organization, MyD88 critically bridges activated receptor complexes to downstream adaptors/effectors. Upon activation, MyD88 is recruited through its TIR domain by the homologous domain of the activated TLR/IL-1R (11, 12). MyD88, in turn, has been shown to interact with a family of downstream kinases, namely IRAK1 (13), IRAK2 (7), IRAK-M (15), and IRAK4 (16), through the interaction of its DD with the respective DDs present in the amino-terminal region of IRAKs (17). At this stage, this multimeric complex is competent to elicit the propagation of the signal downstream of the receptor(s). Although MyD88 recruits IRAK-1 via DD-DD interactions, its recruitment of IRAK-4 appears to be rather unusual. Burns et al. (6) first demonstrated that an alternatively spliced variant of MyD88 (MyD88s), lacking the ID domain, failed to interact with IRAK-4, suggesting that residues located in both the DD and ID of MyD88 are crucially involved in the recruitment of IRAK-4. Nevertheless, no information is available on the specific residues in the DD in MyD88 required for its interaction with either IRAK1 or IRAK4.The DD was initially defined as the region of homology between the cytoplasmic tails of the FAS/Apo1/CD95 and TNF receptors required for their induction of cytotoxic signaling (18, 19). In analogy with other DD-containing proteins, this domain in MyD88 is also involved in the formation of homomeric and heteromeric interactions. Herein, we have undertaken an alanine-scanning mutational analysis to identify amino acids that are required for downstream signaling and might participate in the homomeric and heteromeric interactions. Our studies revealed that MyD88E52A and MyD88Y58A mutants are strongly impaired in the recruitment of both IRAK1 and IRAK4, whereas the MyD88K95A mutant is deficient in recruiting IRAK4. These findings identify residues within the DD of MyD88 crucially involved in the formation of higher order complexes containing IRAK1 and IRAK4 and required for the propagation of the TLR/IL1-R signaling pathways.  相似文献   

19.
MyD88是IL-1R/TLR受体超家族向细胞内转导胞外信号时募集到受体胞浆尾部的重要接头蛋白.由TIR结构域介导的MyD88分子同源二聚化是它招募到受体胞浆尾部的前提,然后二聚化的MyD88再募集下游信号分子,传递信号,引发促炎基因的表达.本研究旨在建立一种模型,以实现活细胞原位的、基于荧光信号变化的MyD88二聚化抑制物的高通量筛选.我们分别构建了MyD88 TIR与GFP和RFP的融合蛋白表达质粒,瞬时转染HeLa细胞,在488 nm激发光下,转染GFP-MyD88 TIR和RFP-MyD88 TIR细胞,检测到绿色荧光与红色荧光间的共振能量转移(FRET).而当细胞转染GFP-MyD88 TIR和RFP或RFP-MyD88 TIR和GFP,因TIR二聚化不能实现,FRET效率受到严重影响.实验结果提示,依赖双阳性表达GFP-MyD88 TIR和RFP-MyD88 TIR的细胞株,检测不同化合物对于荧光FRET效率的影响,可以建立MyD88 TIR二聚化抑制药物的筛选模型.此外,我们构建了原核表达质粒,利用纯化的His-MyD88 TIR分别与GST或GST-MyD88 TIR蛋白进行体外结合实验,发现GST-MyD88 TIR(而非GST)可以与His-MyD88 TIR相互结合.结果的差异性提示,利用His-MyD88 TIR和GST-MyD88 TIR体外结合实验分析,可以进一步确定抑制物是否直接阻断了TIR的相互作用.结合真核细胞的荧光FRET阻断结果和原核表达的重组蛋白相互作用分析,可确定MyD88 TIR二聚化的抑制物.利用这一模型可以对商品化的小分子库、自行制备的天然产物组分进行广泛的筛选,从中获得有效抑制MyD88二聚化的化合物,参与对MyD88信号通路依赖的慢性炎症、自身免疫性疾病的药物治疗.  相似文献   

20.
Previously, we reported that the oral administration of high molecular mass poly-γ-glutamate (γ-PGA) induced antitumor immunity but the mechanism underlying this antitumor activity was not understood. In the present study, we found that application of high molecular mass γ-PGA induced secretion of tumor necrosis factor (TNF)-α from the bone-marrow-derived macrophages of wild type (C57BL/6 and C3H/HeN) and Toll-like receptor 2 knockout (TLR2−/−) mice, but not those of myeloid differentiation factor 88 knockout (MyD88−/−) and TLR4-defective mice (C3H/HeJ). Production of interferon (IFN)-γ-inducible protein 10 (IP-10) in response to treatment with γ-PGA was almost abolished in C3H/HeJ mice. In contrast to LPS, γ-PGA induced productions of TNF-α and IP-10 could not be blocked by polymyxin B. Furthermore, γ-PGA-induced interleukin-12 production was also impaired in immature dendritic cells (iDCs) from MyD88−/− and C3H/HeJ mice. Downregulation of MyD88 and TLR4 expression using small interfering RNA (siRNA) significantly inhibited γ-PGA-induced TNF-α secretion from the RAW264.7 cells. γ-PGA-mediated intracellular signaling was markedly inhibited in C3H/HeJ cells. The antitumor effect of γ-PGA was completely abrogated in C3H/HeJ mice compared with control mice (C3H/HeN) but significant antitumor effect was generated by the intratumoral administration of C3H/HeN mice-derived iDCs followed by 2,000 kDa γ-PGA in C3H/HeJ. These findings strongly suggest that the antitumor activity of γ-PGA is mediated by TLR4. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号