首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Numbers ofDitylenchus dipsaci or Meloidogyne hapla invading Ranger alfalfa, Tender crop bean, Stone Improved tomato, AH-14 sugarbeet, Yellow sweet clover, and Wasatch wheat from single inoculations were not significantly different from numbers by invasion of combined inoculations. D. dipsaci was recovered only from shoot and M. hapla only from root tissue. Combined inoculations did not affect reproduction of either D. dipsaci or M. hapla. D. dipsaci suppressed shoot growth of all species at 15-30 C, and M. hapla suppressed shoot growth of tomato, sugarbeet, and sweet clover at 20, 25, and 30 C. There was a positive correlation (P < 0.05) between shoot and root growth suppression by D. dipsaci on all cultivars except wheat at 20 C and tomato at 30 C. M. hapla suppressed (P < 0.05) root growth of sugarbeet at 20-50 C and wheat at 30 C. Growth suppression was synergistic in combined inoculations of sweet clover shoot growth at 15 C and root growth at 20-30 C, wheat root growth at 15 and 20 C, and tomato root growth at 15-30 C (P < 0.05) D. dipsaci invasions caused mortality of alfalfa and sweet clover at 15-30 C and sugarbeet at 20-30 C. Mortality rates of alfalfa and sweet clover increased synergistically (P < 0.05) from combined inoculations.  相似文献   

2.
Alfalfa (Medicago sativa L. cv. Saranac) seed were soaked for 20 minutes in water, acetone, or methanol containing 10 or 50 mg/ml of oxamyl (Vydate L) or coated with a 2% aqueous cellulose solution containing the same amounts of oxamyl. Seed were analyzed for oxamyl by HPLC immediately after treatment and after 9 and 26 months of storage. Oxamyl content of alfalfa seed did not decline after 26 months of storage. The effects of seed treatment on growth of alfalfa and nematode control were examined using soils infested with Pratylenchus penetrans and Meloidogyne hapla. Germination was not affected by any of the seed treatments. Twenty-one days after sowing, the total growth of alfalfa seedlings grown from seed treated with 50 mg/ml of oxamyl in P. penetrans-infested soils had increased by 62% over controls. Nodulation per pot increased by as much as 267%, and the densities of P. penetrans per gram of root were reduced by as much as 73% compared to control plants. In M. hapla-infested soils, increases in plant growth (32%) and nodulation (71%) also occurred with oxamyl-treated seeds. Root gall reduction (86%) was also substantial due to oxamyl seed treatment.  相似文献   

3.
A polymer sticker was used as a coating in which oxamyl was applied to seeds of alfalfa cultivar Saranac for the control of Pratylenchus penetrans and Meloidogyne hapla. The sticker, diluted 1:1 (sticker:water) to 1:5, delayed seedling emergence during the first 4 days after planting. By day 13, however, emergence from all sticker treatments was comparable to the control. Shoot growth of seedlings at day 21 was less than that of the control only from seeds coated with a 1:1 dilution; root growth and nodulation were not affected. Sticker-coated seeds absorbed 30-58% as much water in 3.5 hours as was absorbed by uncoated seeds. Oxamyl concentrations of 40-160 mg/ml in a 1:5 sticker : water mixture had no adverse affect on seedling emergence, growth, and nodulation over 3 weeks. Oxamyl at 160 mg/ml was more effective against P. penetrans than M. hapla. Growth of alfalfa in P. penetrans-infested soil was greater than that of the control in each sampling for 11 weeks. The reduction of number of P. penetrans in soil and roots moderated slowly over 11 weeks from 90% to 60%. Shoot and root growth of alfalfa from oxamyl-coated seed in M. hapla-infested soil were greater than those of the control for 7 and 11 weeks, respectively. The reduction in the number of M. hapla in the soil and roots changed from 80% at 7 weeks to 15% at 11 weeks.  相似文献   

4.
A non-chemical technique for surface sterilizing plant-parasitic nematodes for aseptic cultures is described. The method is most applicable to nematodes with active migratory infective stages and requires only a few starting specimens. Rate of achieving a primary aseptic culture with the technique ranged from 60%-100% depending on the conditions of the specimens collected for culturing. Aseptic cultures of species of Meloidogyne, Rotylenchuluz, Pratylenchus, and Radopholus initiated with the method remained contamination-free after 12 months of maintenance in tomato root explant or alfalfa callus cultures. Further studies of Pluronic F127, a polyol gel medium employed in the technique to confine the spread of contaminating bacteria or fungi associated with the nematodes, showed that the polyol gel was a suitable support medium for culturing corn root explant, alfalfa callus tissues, and consequently Pratylenchus species including P. agilis, P. brachyurus, P. scribneri, and P. penetrans. During the course of 10 months, P. penetrans reared in polyol-base medium followed a standard biological growth curve, multiplied to a higher population density, maintained a similar female-to-male ratio, and possessed a similar tendency to reside inside or outside host tissues as did P. penetrans reared in agar-base medium. The percentages of P. penetrans juveniles in the sub-populations residing outside or inside the host tissues reared in polyol-base medium also were similar to and fluctuated temporally in like manner as those reared in agar-base medium. Members of these sub-populations from the polyol- or agar-base were equally infective and reproductive after 9 months of culturing.  相似文献   

5.
Alfalfa is a host of Pratylenchus penetrans and P. neglectus, whereas crested wheatgrass is a host of P. neglectus but not of P. penetrans. In a 120-day greenhouse experiment at 24 ñ 3 C, P. neglectus inhibited the growth of ''Lahontan'' alfalfa and ''Fairway'' crested wheatgrass. There were no differences in persistence and plant growth of alfalfa and crested wheatgrass, or reproduction of P. neglectus, in single plantings of alfalfa (AO) or crested wheatgrass (CWO), or in interplanted alfalfa and crested wheatgrass (ACW) treatments. On alfalfa, P. penetrans inhibited growth and reproduced more than did P. neglectus. Inhibition of plant growth and reproduction of P. penetrans was greater on alfalfa in AO than in ACW treatments. Pratylenchus penetrans did not reproduce on crested wheatgrass, but inhibited growth of crested wheatgrass in interplanted treatments and was avirulent in single planted treatments. Results were similar in a controlled growth chamber experiment at 15, 20, 25, and 30 C. Both nematode species inhibited alfalfa growth at all temperatures, and P. penetrans was more virulent than was P. neglectus to alfalfa at all temperatures and treatments. Plant growth inhibition and reproduction of P. penetrans on alfalfa in single and interplanted treatments were similar at 15-20 C, but were greater in single than in interplanted treatments at 25-30 C. Pratylenchus penetrans was avirulent to crested wheatgrass in the single planted treatments at all temperatures, but inhibited growth of crested wheatgrass in interplanted treatments at 20-30 C. Plant growth and reproduction of P. neglectus on crested wheatgrass was similar in single and interplanted treatments at 20-30 C and 15-30 C, respectively.  相似文献   

6.
The influence of nematodes on nodulation of soybean varied according to their modes of parasitism. In the greenhouse, nodule formation was stimulated by the endoparasites, Meloidogyne hapla and Pratylenchus penetrans, but was inhibited slightly by the ectoparasite, Belonolaimus longicaudatus. In an experiment under controlled conditions in a phytotron, Heterodera glycines severely inhibited nodule formation, whereas plants inoculated with B. longicaudatus and P. penetrans had more nodules per g root than nematode-free plants. Nitrogen-fixing capacity, however, was inhibited by all three nematode species. Different light sources used in the phytotron experiment also influenced growth and nodulation of soybean. A fluorescent plus incandescent light regime resulted in plants with the greatest shoot weight, pod number, and nodules per g root. Plants grown under Lucalox lamps had excessive stem elongation.  相似文献   

7.
Oxamyl was coated on carrot (Daucus carota L. cv. Spartan Fancy-80) and tomato (Lycopersicon esculentum Mill. cv. Glamour) seeds with a polymer sticker for the control of Meloidogyne hapla. The sticker diluted in water 1:1 delayed carrot seedling emergence. Oxamyl at 40 mg/ml in a 1:5 dilution of sticker lowered the rate of carrot seedling emergence until day 13 and plant growth until day 28. Oxamyl at 20 or 40 mg/ml in a 1:5 dilution of sticker on carrot seeds planted in M. hapla-infested muck soil resulted in fewer galled tap roots and fewer galls per root system 4 weeks after planting. Tap root lengths were greater than those of the control. Tomato seedling emergence was delayed and top and root weights were reduced, relative to the control, at 25 days by the sticker diluted 1:1 to 1:3. Oxamyl at 20 or 40 mg/ml in a 1:5 diluted sticker delayed tomato seedling emergence. Top weights of tomato seedlings from seeds coated with 20 mg/ml of oxamyl in a 1:5 diluted sticker planted in a silt loam were greater than control top weights at 4 and 6 weeks. Root weights were greater than those of the control only at 4 weeks. There were fewer galls per gram of root on seedlings from oxamyl-coated seeds and fewer juveniles per pot of soil, relative to the controls, only at 4 weeks.  相似文献   

8.
The interaction between vesicular-arbuscular mycorrhizal (VAM) fungi and the root-knot nematode (Meloidogyne hapla) was investigated using both nematode-susceptible (Grasslands Wairau) and nematode-resistant (Nevada Synthetic XX) cultivars of alfalfa (Medicago sativa) at four levels of applied phosphate. Mycorrhizal inoculation improved plant growth and reduced nematode numbers and adult development in roots in dually infected cultures of the susceptible cultivar. The tolerance of plants to nematode infection and development when preinfected with mycorrhizal fungi was no greater than when they were inoculated with nematodes and mycorrhizal fungi simultaneously. Growth of plants of the resistant cultivar was unaffected by nematode inoculation but was improved by mycorrhizal inoculation. Numbers of nematode juveniles were lower in the roots of the resistant than of the susceptible cultivar and were further reduced by mycorrhizal inoculation, although no adult nematodes developed in any resistant cultivar treatment. Inoculation of alfalfa with VAM fungi increased the tolerance and resistance of a cultivar susceptible to M. hapla and improved the resistance of a resistant cultivar.  相似文献   

9.
Treatment of daffodil (Narcissus pseudonarcissus) bulbs in a 0.37% formaldehyde water solution at 44 C for 240 minutes is a standard practice in California for management of the stem and bulb nematode, Ditylenchus dipsaci. Recent concern over the safety of formaldehyde and growers'' requests for a shorter treatment time prompted a reevaluation of the procedure. The time (Y, in minutes) required to raise the temperature at the bulb center from 25 to 44 C was related to bulb circumference (X, in cm) and is described by the linear regression Y = -15 + 3.4X. The time required for 100% mortality of D. dipsaci in vitro without formaldehyde was 150, 60, and 15 minutes at 44, 46, and 48 C, respectively. Hot water treatment (HWT) with 0.37% formaldehyde at 44 C for 150 minutes controlled D. dipsaci and did not have a detrimental effect on plant growth and flower production. Shorter formaldehyde-HWT of 90, 45, and 30 minutes at 46, 48, and 50 C, respectively, controlled D. dipsaci but suppressed plant growth and flower production. Fungal genera commonly isolated from the bulbs in association with D. dipsaci were Penicillium sp., Fusarium oxysporum f. sp. narcissi, and Mucor plumbeus, representing 60, 25, and 5%, respectively, of the total fungi isolated. These fungi caused severe necrosis in daffodil bulbs. HWT at 44 C for 240 minutes reduced the number of colonies recovered from bulbs. The effects of formaldehyde, glutaraldehyde, and sodium hypochlorite in reducing the population of fungi within bulbs were variable. Satisfactory control of D. dipsaci within bulbs can be achieved with HWT of bulbs at 44 C for 150 minutes with 0.37% formaldehyde or at 44 C for 240 minutes without chemicals.  相似文献   

10.
In a soil temperature study, population increase on ''Clark 63'' soybeatt was most rapid at 30 C in Pratylenchus alleni, P. brachyurus, P. cofleae, P. neglectus, P. scribneri, and P. zeae and at 25 C in P. penetrans and P. vulnus. The last two were the only species that reproduced at 15 C. Populations of all species increased over the range of 20-30 C, except those of P. neglectus at 20 C and P. coffeae, which was not tested below 25 C. Only P. brachyurus, P. neglectus, P. scribneri and P. zeae reproduced at 35 C. At their optimum temperatures, P. scribneri exhibited the greatest population increase, 1248-fold, and P. penetrans the least, 32-fold. This is the first report of soybean as a host for P. vulnus.  相似文献   

11.
Rates of nematode penetration and the histopathology of root infections in fluecured tobacco cultivars ''McNair-944,'' ''Speight G-28,'' and ''NC-89'' with either Meloidogyne arenaria, M. incognita, M. hapla, or M. javanica were investigated. Penetration of root tips by juveniles of all species into the M. incognita-resistant NC-89 and G-28 was much less than that on the susceptible McNair-944. Few juveniles of M. incognita were detected in resistant cultivars 7 and 14 days after inoculation. Infection sites exhibited some cavities and extensive necrotic tissue at 14 days; less necrotic tissue and no intact nematodes were observed 35 days after inoculation. Although some females of M. arenaria reached maturity and produced eggs, considerable necrosis was induced in the resistant cultivars. Meloidogyne hapla and M. javanica developed on all cultivars, but there was necrotic tissue at some infection sites in the resistant cultivars. The occurrence of single multistructured nuclei in the syncytia of most M. hapla infections differed from the numerous small nuclei found in syncytia caused by the other three species.  相似文献   

12.
Verticillium albo-atrum wilt symptoms appeared faster and were significantly more severe in the presence of Ditylenchus dipsaci in Vernal, a wilt-susceptible cultivar, than in Marls Kabul, a wilt-resistant cultivar. Winter kill in the field was not affected by the nematode during the first winter, but 50% of plants were killed in the second winter. Forage yield from nematode-infected plants was significantly reduced the second year. Interaction with V. albo-atrum did not significantly reduce forage yields below that of D. dipsaci alone. Pratylenchus penetrans did not increase the severity of wilt symptoms in the presence of V. albo-atrum, nor did it affect forage yield in the greenhouse. It did, however, reduce alfalfa yields in presence of V. albo-atrum under field conditions. D. dipsaci and P. penetrans reproduced faster in Vernal than in Maris Kabul when the fungus was present.  相似文献   

13.
Oxamyl was applied to both uncut and cut potato tubers in aqueous solutions of 1,000 to 32,000 μg/ml. Emergence in greenhouse pots was delayed for a day or more after soaking cut tuber pieces in 32,000 μg/ml. After 10 weeks plant growth was greater, relative to the control, when Pratylenchus penetrans-infested soil was planted with cut tubers soaked for 20 minutes in 32,000 μg/ml. Soaking for 40 minutes did not increase nematode control nor affect plant growth. Oxamyl applied to tubers at 1,000 μg/ml reduced the numbers of P. penetrans in the soil by 20% and in the roots by 35%; at 32,000 μg/ml, the numbers of P. penetrans in the soil were reduced by 73-86% and in the roots by 86-97%. The numbers of P. penetrans did not increase in the roots of plants developed from cut tubers soaked in 32,000 μg/ml over a period of 10 weeks, but numbers of lesion nematodes had begun to increase in the soil.  相似文献   

14.
Head shape and stylet morphology of males of 90 populations of M. arenaria, M. hapla, M. incognita, and M. javanica from geographic regions of the world were compared by light microscopy (LM). In addition, stylets of one population each of M. arenaria, M. incognita, and M. javanica and three different chromosomal forms of M. hapla race A and two of race B were excised and examined with a scanning electron microscope (SEM). Differences among species occurred in both head and stylet morphology. Head morphology differed in size and shape of the head cap, annulation of the head region, and width of the head region relative to the first body annule. Differences in stylets occurred in size and shape of the cone, shaft, and knobs. All populations of M. hapla, except one, had similar head morphology, but stylet morphology was different between cytological races A and B. Populations of M. javanica varied with respect to the presence of head annulations. Head shape and stylet morphology of males are recommended as additional characters useful in the identification of root-knot nematodes.  相似文献   

15.
Strawberry roots were sampled through the year to determine the populations and distribution of Pratylenchus penetrans and Meloidogyne hapla. Three strawberry root types were sampled—structural roots; feeder roots without secondary tissues; and suberized, black perennial roots. Both lesion and root-knot nematodes primarily infected feeder roots from structural roots or healthy perennial roots. Few nematodes were recovered from soil, diseased roots, or suberized roots. Lesion nematode recovery was correlated with healthy roots. In both 1997 and 1998, P. penetrans populations peaked about day 150 (end of May) and then declined. The decline in numbers corresponded to changes in total strawberry root weight and root type distribution. The loss of nematode habitat resulted from loss of roots due to disease and the transition from structural to suberized perennial roots. Meloidogyne hapla juvenile recovery peaked around 170 days (mid June) in 1997 and at 85, 147, 229, and 308 days (late March, late May, mid August, and early November, respectively) in 1998. There appear to be at least four generations per year of M. hapla in Connecticut. Diagnostic samples from an established strawberry bed may be most reliable and useful when they include feeder roots taken in late May.  相似文献   

16.
Advance inoculation of the tomato cv. Celebrity or the pyrethrum clone 223 with host-incompatible Meloidogyne incognita or M. javanica elicited induced resistance to host-compatible M. hapla in pot and field experiments. Induced resistance increased with the length of the time between inoculations and with the population density of the induction inoculum. Optimum interval before challenge inoculation, or population density of inoculum for inducing resistance, was 10 days, or 5,000 infective nematodes per 500-cm³ pot. The induced resistance suppressed population increase of M. hapla by 84% on potted tomato, 72% on potted pyrethrum, and 55% on field-grown pyrethrum seedlings, relative to unprotected treatments. Pyrethrum seedlings inoculated with M. javanica 10 days before infection with M. hapla were not stunted, whereas those that did not receive the advance inoculum were stunted 33% in pots and 36% in field plots. The results indicated that advance infection of plants with incompatible or mildly virulent nematode species induced resistance to normally compatible nematodes and that the induced resistance response may have potential as a biological control method for plant nematodes.  相似文献   

17.
The pathogenicity of Heterodera glycines, Meloidogyne incognita, and Pratylenchus penetrans on H. glycines-resistant ''Bryan,'' tolerant-susceptible ''G88-20092,'' and intolerant-susceptible ''Tracy M'' soybean cultivars was tested using plants grown in 800 cm³ of soil in 15-cm-diam. clay pots in three greenhouse experiments. Plants were inoculated with 0, 1,000, 3,000, or 9,000 H. glycines race 3 or M. incognita eggs, or vermiform stages of P. penetrans/pot. Forty days after inoculation, nmnbers of all three nematodes, except H. glycines on Bryan, generally increased with increasing inoculum levels in Experiment I. Heterodera glycines and M. incognita significantly decreased growth only of Tracy M. At 45 and 57 days after inoculation with 6,000 individuals/pot in experiments II and III, respectively, significantly more P. penetrans and M. incognita than H. glycines were found on Bryan. However, H. glycines and M. incognita population densities were greater than P. penetrans on G88-20092 and Tracy M. Growth of Tracy M infected by H. glycines and M. incognita and growth of G88-20092 infected by M. incognita decreased in Experiment III. Pratylenchus penetrans did not affect plant growth. Reduction in plant growth differed according to the particular nematode species and cultivar, indicating that nematodes other than the species for which resistance is targeted can have different effects on cultivars of the same crop species.  相似文献   

18.
A hypothesis that cherry rootstocks grown under optimal nutrient conditions are affected less by Pratylenchus penetrans infection than those grown under deficient nutrient conditions was tested by growing four Prunus avium L. rootstocks (''Mazzard'', ''Mahaleb'', ''GI148-1'', and ''GI148-8'') at a soil pH of 7.0 over a period of 3 months under greenhouse conditions (25 ñ 2 °C). Pratylenchus penetrans was inoculated at 0 (control) or 1,500 nematodes per g fresh root weight for a total of 3,600, 4,200, 10,500, and 11,400 per plant on Mazzard, Mahaleb, GI148-1, and GI148-8, respectively, with nutrients (commercial fertilizer) applied once at planting (deficient) or twice weekly (optimal). The experiment was repeated once. The optimum nutrient regime resulted in greater soil nutrient levels and plant growth; higher leaf concentrations of N, P, K, and Mg; and fewer P. penetrans than under the deficient nutrient regime. The addition of fertilizer either may increase nematode mortality in the soil or improve rootstock resistance to nematode infection. Increases in Ca in leaves from the nutrient-deficient and nematode-infected treatments suggested the plants were physiologically stressed. The Pf/Pi ratios indicated that these rootstocks may have had resistance to P. penetrans; however, because of the dominant role of nutrition in the experimental design, the question of resistance could not be properly addressed.  相似文献   

19.
Changes in population levels of Meloidogyne hapla, M. incognita, Pratylenchus coffeae, and P. penetrans were studied in 12 strawberry fields in the Dahu region of Taiwan. Ten potential rotation crops and two cultural practices were evaluated for their effect on nematode populations and influence on strawberry yield. Rotation with rice or taro and the cultural practice of flooding and bare fallowing for four months were found to reduce nematode soil populations to two or fewer nematodes per 100 ml soil. Average strawberry yields increased between 2.4% to 6.3% following taro compared to the bare fallow treatment. Corn suppressed M. incognita and M. hapla populations and resulted in an increased in strawberry yield compared to bare fallow. Other phytopathogens also present in these fields limited taro as the rotation choice for nematode management. Results of this research and economic analysis of the input requirements for various rotation crops, corn and bare fallow were recommended as the most appropriate rotation strategies for nematode management in strawberry in this region.  相似文献   

20.
Flue-cured tobacco was grown in microplots consisting of concrete drainage tries, 40-cm (i.d.), infested with 0; 666 ; 2000; 6000 or 18,000 root-lesion nematodes, Pratylenchus penetrans/kg of soil. Yield and grade index decreased with preplant soil population densities in excess of 2000/kg of soil. At initial densities of 6000 and 18,000/kg of soil losses in crop returns were 11.0% and 27.5%, respectively. Decreases in the maturity index and in percentage dry stalk weight with increasing densities showed that the nematode delayed maturity. Increases in population densities of nematodes were correlated with decreases in weights of tops and roots and in plant height. All final population densities in soil were lower than the initial densities except at the lowest pre-plant density. All soil populations at midseason were lower than those at the beginning and end of the growing season. Populations of P. penetrans at harvest were in excess of half a million per root system with the 18,000/kg initial soil population density. The results suggest that fumigation, which costs $75/ha, or approximately 2% of the crop value, is economically warranted at preplant densities in excess of 2000/kg of soft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号