首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
革兰氏阴性菌木醋杆菌(Acetobacter xylinum (Brown) Yamada)合成一种由纤维素微纤丝组成的胞外带状物.与高等植物纤维素相比,它具有独特的结构和机械性能.根据从木醋杆菌ATCC 53582克隆的acs纤维素合成操纵子序列设计引物, 用PCR的方法从木醋杆菌Ay201中克隆了ayacs纤维素合成操纵子的全部4个基因.序列比较发现,两者高度同源.将连上CaMV 35S启动子的acsA、acsB克隆到植物表达载体pCAMBIA 1301上,acsC、acsD克隆到pCOB302-3中.然后通过花粉管通道法转化棉花(Gossypium hirsutum)胚珠,收获的种子在含有卡那霉素和除草剂的双抗培养基上进行筛选.PCR检测发现934粒种子中有5棵植株含有全部4个基因.这是首次将编码4个功能蛋白的细菌操纵子成功地转入棉花.  相似文献   

2.
根据已知非核糖体肽合成抗生素操纵子的保守序列设计引物,从对棉花立枯病有很好拮抗作用的枯草芽孢杆菌(Bacillus subtilis)MH25菌株中克隆相关操纵子.获得了枯草芽孢杆菌MH25的一个非核糖体肽合成抗生素操纵子序列,其包括4个ORF(ORF1,ORF2,OKF3,ORF4),与枯草芽孢杆菌RB14的ituD,ituA,tiuB和ituC的同源性分别为99%,98.70%,98.99%和99.48%,4个ORF编码的氨基酸序列与ItuD,ItuA,ItuB,ItuC的相似性分别为98%,98.54%,98.69%和98%.然后将4个ORF分别进行结构域分析,ORF3的14 779~14 963序列与ituB相对应区域的相似性为86.24%.该操纵子的启动子区为TATACACA-16bp-TAGGAT,与σA-10和-35(TTGACA-17bp-TATAAAT)不同.枯草芽孢杆菌MH25的Iturin A操纵子序列已在GenBank中注册,登陆号为EU263005.  相似文献   

3.
利用BLAST从B.cereus ATCC14579的基因组中找到一段与枯草芽孢杆茵核黄素操纵子具有较高相似性的4.6kb大小的基因组DNA片段,该片段中含有完整的核黄素操纵子。该操纵子结构基因的编码产物的氨基酸序列与枯草芽孢杆菌核黄素操纵子相应结构基因的编码产物的氨基酸序列具有99%的同源性。该片段被克隆到大肠杆茵一枯草芽孢杆茵穿梭载体pHP13M中。表达分析的结果表明B.cereus ATCC14579核黄素操纵子可在大肠杆茵和枯草芽孢杆菌中表达。利用PCR方法用来自枯草杆菌的sac B基因的启动子替换B.cereus ATCC14579核黄素操纵子原有的启动子使其更好表达。替换启动子后的核黄素操纵子在本文使用的发酵条件下有较好的表达,核黄素产量从39.5mg/L增加到61.7mg/L.  相似文献   

4.
获得高抗虫转双基因烟草   总被引:34,自引:4,他引:30  
利用DNA合成仪人工合成了豇豆胰蛋白酶抑制剂(cpTl)的cDNA编码全序列。合成的基因经过克隆和序列分析后.克隆到植物高效表达载体上,并转化农杆菌,通过共转化的方法,将cpTI基因和经人工改造的苏云金芽孢杆菌(B.T)δ-内毒素基因共转化烟草,得到经PCR扩增并Southern-blotting验证的分别含有CpTI和B.T基因的植株以及同时含有CpTI和B.T基因的植株。利用棉铃虫幼虫进行的杀虫测试表明.转基因烟草和对照烟草相比具有明显的杀虫活性-同时转双基因的烟草和转单一基因的烟草相比具有增强的杀虫活性。  相似文献   

5.
6.
曼地亚红豆杉植株中GGPP合成酶的克隆与分析   总被引:4,自引:0,他引:4  
从 5年生曼地亚红豆杉 (Taxusmedia)的当年生新鲜枝叶中提取分离出mRNA ,然后根据已知植物的牛儿基牛儿基焦磷酸合成酶基因 (GGPPS基因 )DNA序列保守区设计特异简并引物。RT PCR获得了一条大小约 60 0bp的扩增谱带 ,回收该特异谱带并进行TA克隆 ,蓝白斑筛选 ,得到若干阳性克隆。经过质粒大小比较和PCR验证后 ,进行序列测定和同源性比较。发现该序列属于GGPP合成酶的片断 ,与Taxuscanadensis (AAD 1 60 1 8 1 )和Abiesgrandis (AAL1 761 4 2 )的GGPP合成酶相应区段的氨基酸序列一致性为 98%和 86%。蛋白质序列分析发现该序列含有一个特征的异戊二烯合成酶保守的结构域。进化树分析表明 ,曼地亚红豆杉GGPPS在进化上位于植物类 ,靠近古细菌类。曼地亚红豆杉GGPPS基因的克隆为研究红豆杉生产紫杉醇的分子机理和转基因植株的构建奠定了良好的基础。  相似文献   

7.
植物乳杆菌C88胞外多糖生物合成基因的克隆及序列比对   总被引:1,自引:0,他引:1  
乳酸菌胞外多糖能显著改善发酵乳制品及食品的流变学和质构特性.为进一步了解乳酸菌胞外多糖的生物合成途径及调控机制,本研究对参与植物乳杆菌C88胞外多糖生物合成基因簇的部分序列进行了克隆和鉴定.根据GenBank中已报道植物乳杆菌基因序列的保守区域设计特异性引物,扩增出植物乳杆菌C88生物合成蛋白基因(cps4A)序列,并通过染色体步移方法克隆了植物乳杆菌C88 参与胞外多糖合成基因簇的部分序列(4.9 kb).利用生物信息学方法预测基因簇中6个阅读框的结构和功能,结果表明该序列与已报道的乳酸杆菌胞外多糖生物合成基因具有高度的同源性(>96%);对各阅读框功能预测分析发现,这6个基因主要编码参与胞外多糖合成中的多糖合成蛋白、糖链长度检测蛋白、UDP-葡萄糖-4-异构酶和糖基转移酶.本研究将为利用基因工程方法调控多糖的合成和产量提供理论依据.  相似文献   

8.
该研究根据棉花生物信息数据库,采用PCR方法从棉花(Gossypium barbadense L.)中克隆了1个CBF/DREB转录因子基因,命名为GbCBF6(GenBank登录号为KR233255)。GbCBF6基因开放阅读框为753bp,编码251个氨基酸,预测分子量为27.82kD,等电点为7.68。氨基酸多重序列比对结果表明,GbCBF6基因编码的蛋白与其他植物冷胁迫相关的CBF蛋白具有高度的同源性,含有1个AP2功能结构域和2个特征序列基序;与棉花已经克隆的4个GhCBF基因的氨基酸序列差异较大,是1个新的棉花CBF基因。系统进化树分析表明,GbCBF6基因属于DREB亚家族中的A-1亚组。RT-PCR分析表明,GbCBF6基因表达受干旱胁迫下调,而受4℃低温上调,在高盐(200mmol/L NaCl)处理下其表达量先下降,后增加。推测GbCBF6基因在棉花非生物胁迫的调控中起重要作用。  相似文献   

9.
采用RT-PCR和RACE技术从油葵(Helianthus annuus L.)种子中克隆了DGAT基因的cDNA全长序列,命名为HaDl(GenBank登录号为HM 015632).将HaDl与CaMV 35S组成型启动子融合,构建植物表达载体pBI-HaDl,通过根癌农杆菌介导转化烟草.对转基因植株进行GUS及PCR检测,同时采用气相色谱-质谱法(GC-MS)分析转基因烟草叶片中脂肪酸各成分的含量.结果表明:HaDl基因cDNA全长1 936 bp,最大开放阅读框为1 524 bp,编码507个氨基酸;推测的氨基酸序列与其它植物已报道的DGAT1基因的氨基酸序列一致性为70%~80%,具有DGAT1蛋白保守的二酰甘油结合基序"HKWIVRHLYFP",因此HaDl基因属于DGAT1基因家族.GUS活性染色及PCR检测均证明外源HaDl整合到烟草基因组并成功表达.转基因烟草叶片脂肪酸含量测定发现,油酸、软脂酸和硬脂酸的含量得到提高,推测HaDl是植物油脂合成相关的重要基因.  相似文献   

10.
根据E6基因保守域设计引物 ,PCR扩增出亚洲棉 (GossypiumarboreumL .)GAE6基因长约 40 0bp片段 ,序列分析表明该片段与海岛棉 (G .barbadense)E6基因同源性达 96 .8%。进一步合成 2个反向引物协助进行PCR 96孔板筛库分离到亚洲棉GAE6 3A克隆。酶切鉴定其插入片段长约 8.0kb ,序列测定及分析结果表明其上游长约 1.5kb。将GAE6 3A上游序列克隆至含有内含子的GUS基因前 ,构建了植物表达载体。三亲杂交后农杆菌介导转化烟草 ,组织化学分析显示GUS基因在转基因烟草植株的根、茎、叶的表皮 (包括表皮毛 )及维管组织表达较强  相似文献   

11.
Three sets of cellulose synthase genes were cloned from a cellulose-producing bacterium Acetobacter xylinum JCM 7664. One set of genes (bcsAI/bcsBI/bcsCI/bcsDI) were highly conserved with the well-established type I genes in other strains of A. xylinum, while the other two (bcsABII-A, bcsABII-B) were homologous to the known type II (acsAII). Unexpectedly, they were immediately followed by a gene cluster of bcsX/bcsY/bcsCII/ORF569, likely forming an operon. Western blotting demonstrated that the BcsY protein accumulated in cells. Since BcsY showed striking similarities to a number of membrane-bound transacylases, it was hypothesized that the type II cellulose synthase produces acylated cellulose, which might be anchored on the cytoplasmic membrane. An insertion sequence of IS1380-type was found just upstream of the one type II gene (bcsABII-B), suggestive of nonfunctioning.  相似文献   

12.
A region of the chromosome of Agrobacterium tumefaciens 11 kb long containing two operons required for cellulose synthesis and a part of a gene homologous to the fixR gene of Bradyrhizobium japonicum has been sequenced. One of the cellulose synthesis operons contained a gene (celA) homologous to the cellulose synthase (bscA) gene of Acetobacter xylinum. The same operon also contained a gene (celC) homologous to endoglucanase genes from A. xylinum, Cellulomonas uda, and Erwinia chrysanthemi. The middle gene of this operon (celB) and both the genes of the other operon required for cellulose synthesis (celDE) showed no significant homology to genes contained in the databases. Transposon insertions showed that at least the last gene of each of these operons (celC and celE) was required for cellulose synthesis in A. tumefaciens.  相似文献   

13.
Cellulose biosynthesis and function in bacteria.   总被引:66,自引:1,他引:65       下载免费PDF全文
The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most evident for Acetobacter xylinum, polymerization and assembly appear to be tightly coupled. To date, only bacteria have been effectively studied at the biochemical and genetic levels. In A. xylinum, the cellulose synthase, composed of at least two structurally similar but functionally distinct subunits, is subject to a multicomponent regulatory system. Regulation is based on the novel nucleotide cyclic diguanylic acid, a positive allosteric effector, and the regulatory enzymes maintaining its intracellular turnover: diguanylate cyclase and Ca2(+)-sensitive bis-(3',5')-cyclic diguanylic acid (c-di-GMP) phosphodiesterase. Four genes have been isolated from A. xylinum which constitute the operon for cellulose synthesis. The second gene encodes the catalytic subunit of cellulose synthase; the functions of the other three gene products are still unknown. Exclusively an extracellular product, bacterial cellulose appears to fulfill diverse biological roles within the natural habitat, conferring mechanical, chemical, and physiological protection in A. xylinum and Sarcina ventriculi or facilitating cell adhesion during symbiotic or infectious interactions in Rhizobium and Agrobacterium species. A. xylinum is proving to be most amenable for industrial purposes, allowing the unique features of bacterial cellulose to be exploited for novel product applications.  相似文献   

14.
The beta-glucosidase gene (bglxA) was cloned from the genomic DNA of Acetobacter xylinum ATCC 23769 and its nucleotide sequence (2200 bp) was determined. This bglxA gene was present downstream of the cellulose synthase operon and coded for a polypeptide of molecular mass 79 kDa. The overexpression of the beta-glucosidase in A. xylinum caused a tenfold increase in activity compared to the wild-type strain. In addition, the action pattern of the enzyme was identified as G3ase activity. The deduced amino acid sequence of the bglxA gene showed 72.3%, 49.6%, and 45.1% identity with the beta-glucosidases from A. xylinum subsp. sucrofermentans, Cellvibrio gilvus, and Mycobacterium tuberculosis, respectively. Based on amino acid sequence similarities, the beta-glucosidase (BglxA) was assigned to family 3 of the glycosyl hydrolases.  相似文献   

15.
Li X  Wang XD  Zhao X  Dutt Y 《Plant cell reports》2004,22(9):691-697
A novel method for the genetic transformation of cotton pollen by means of vacuum infiltration and Agrobacterium-mediated transformation is reported. The acsA and acsB genes, which are involved in cellulose synthesis in Acetobacter xylinum, were transferred into pollen grains of brown cotton with the aim of improving its fiber quality by incorporating useful prokaryotic features into the colored cotton plants. Transformation was carried out in cotton pollen-germinating medium, and transformation was mediated by vector pCAMBIA1301, which contains a reporter gene -glucuronidase (GUS), a selectable marker gene, hpt, for hygromycin resistance and the genes of interest, acsA and acsB. The integration and expression of acsA, acsB and GUS in the genome of transgenic plants were analyzed with Southern blot hybridization, PCR, histochemical GUS assay and Northern blot hybridization. We found that following pollination on the cotton stigma transformed pollen retained its capability of double-fertilization and that normal cotton seeds were produced in the cotton ovary. Of 1,039 seeds from 312 bolls pollinated with transformed pollen grains, 17 were able to germinate and grow into seedlings for more than 3 weeks in a nutrient medium containing 50 mg/l hygromycin; eight of these were transgenic plants integrated with acsA and acsB, yielding a 0.77% transformation rate. Fiber strength and length from the most positive transformants was 15% greater than those of the control (non-transformed), a significant difference, as was cellulose content between the transformed and control plants. Our study suggests that transformation through vacuum infiltration and Agrobacterium mediated transformation can be an efficient way to introduce foreign genes into the cotton pollen grain and that cotton fiber quality can be improved with the incorporation of the prokaryotic genes acsA and acsB.Communicated by D. Bartels  相似文献   

16.
I M Saxena  K Kudlicka  K Okuda    R M Brown  Jr 《Journal of bacteriology》1994,176(18):5735-5752
The synthesis of an extracellular ribbon of cellulose in the bacterium Acetobacter xylinum takes place from linearly arranged, membrane-localized, cellulose-synthesizing and extrusion complexes that direct the coupled steps of polymerization and crystallization. To identify the different components involved in this process, we isolated an Acetobacter cellulose-synthesizing (acs) operon from this bacterium. Analysis of DNA sequence shows the presence of three genes in the acs operon, in which the first gene (acsAB) codes for a polypeptide with a molecular mass of 168 kDa, which was identified as the cellulose synthase. A single base change in the previously reported DNA sequence of this gene, resulting in a frameshift and synthesis of a larger protein, is described in the present paper, along with the sequences of the other two genes (acsC and acsD). The requirement of the acs operon genes for cellulose production was determined using site-determined TnphoA/Kanr GenBlock insertion mutants. Mutant analysis showed that while the acsAB and acsC genes were essential for cellulose production in vivo, the acsD mutant produced reduced amounts of two cellulose allomorphs (cellulose I and cellulose II), suggesting that the acsD gene is involved in cellulose crystallization. The role of the acs operon genes in determining the linear array of intramembranous particles, which are believed to be sites of cellulose synthesis, was investigated for the different mutants; however, this arrangement was observed only in cells that actively produced cellulose microfibrils, suggesting that it may be influenced by the crystallization of the nascent glucan chains.  相似文献   

17.
About 14.5 kb of DNA fragments from Acetobacter xylinum ATCC23769 and ATCC53582 were cloned, and their nucleotide sequences were determined. The sequenced DNA regions contained endo-beta-1,4-glucanase, cellulose complementing protein, cellulose synthase subunit AB, C, D and beta-glucosidase genes. The results from a homology search of deduced amino acid sequences between A. xylinum ATCC23769 and ATCC53582 showed that they were highly similar. However, the amount of cellulose production by ATCC53582 was 5 times larger than that of ATCC23769 during a 7-day incubation. In A. xylinum ATCC53582, synthesis of cellulose continued after glucose was consumed, suggesting that a metabolite of glucose, or a component of the medium other than glucose, may be a substrate of cellulose. On the other hand, cell growth of ATCC23769 was twice that of ATCC53582. Glucose is the energy source in A. xylinum as well as the substrate of cellulose synthesis, and the metabolic pathway of glucose in both strains may be different. These results suggest that the synthesis of cellulose and the growth of bacterial cells are contradictory.  相似文献   

18.
Recently, it was shown that a cellulose-negative mutant (Cel1) of Acetobacter xylinum ATCC 23769 carried an insertion of an indigenous transposable element (IS1031A) about 500 bp upstream of the bcs operon, required for cellulose synthesis. Here we show that Cel1 can be complemented by wild-type DNA covering the insertion point. Nucleotide sequencing of this region revealed the presence of two open reading frames, ORF1 and ORF2. ORF2, which is disrupted by the IS1031A insertion in Cel1, potentially encodes the complementing function. ORF1 encodes a protein (CMCax) with significant homology to previously described endoglucanases. A cloned DNA fragment containing ORF1 expressed a carboxymethyl cellulose-hydrolyzing activity in Escherichia coli. In A. xylinum, CMCax is secreted into the culture growth medium. The CMCax mature protein consists of 322 amino acids and has a molecular mass of 35.6 kDa.  相似文献   

19.
Y Amor  R Mayer  M Benziman    D Delmer 《The Plant cell》1991,3(9):989-995
Because numerous attempts to detect an activity for a cellulose synthase in plants have failed, we have taken a different approach toward detecting polypeptides involved in this process. The uniqueness of the structure and function of cyclic diguanylic acid (c-di-GMP) as an activator of the cellulose synthase of the bacterium Acetobacter xylinum makes it an attractive probe to use in a search for a c-di-GMP receptor that might be involved in the process in plants. Direct photolabeling with 32P-c-di-GMP has been used, therefore, to identify in plants two membrane polypeptides of 83 and 48 kD derived from cotton fibers that possess properties consistent with their being components of a c-di-GMP-dependent cellulose synthase. Based upon several criteria, the 48-kD species is proposed to be derived by proteolytic cleavage of the 83-kD polypeptide. Both polypeptides bind c-di-GMP with high affinity and specificity and show antigenic relatedness to the bacterial cellulose synthase, and the N-terminal sequence of the 48-kD polypeptide also indicates relatedness to the bacterial synthase. Ability to detect both cotton fiber polypeptides by photolabeling increases markedly in extracts derived from fibers entering the active phase of secondary wall cellulose synthesis. These results provide a basis for future work aimed at identifying and characterizing genes involved in cellulose synthesis in plants.  相似文献   

20.
In nuclear transgenic plants, expression of multiple genes requires introduction of individual genes and time-consuming subsequent backcrosses to reconstitute multi-subunit proteins or pathways, a problem that is compounded by variable expression levels. In order to accomplish expression of multiple genes in a single transformation event, we have introduced several genes into the chromoplast genome. We confirmed stable integration of the cry2Aa2 operon by PCR and Southern blot analyses in T(0) and T(1) transgenic plants. Foreign protein accumulated at 45.3% of the total soluble protein in mature leaves and remained stable even in old bleached leaves (46.1%), thereby increasing the efficacy and safety of transgenic plants throughout the growing season. This represents the highest level of foreign gene expression reported in transgenic plants to date. Insects that are normally difficult to control (10-day old cotton bollworm, beet armyworm) were killed 100% after consuming transgenic leaves. Electron micrographs showed the presence of the insecticidal protein folded into cuboidal crystals. Formation of crystals of foreign proteins (due to hyperexpression and folding by the putative chaperonin, ORF 2) provides a simple method of purification by centrifugation and enhances stability by protection from cellular proteases. Demonstration of expression of an operon in transgenic plants paves the way to engineering new pathways in plants in a single transformation event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号