首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The effects of 10 wk of functional overload (FO), with and without daily treadmill endurance training, on the cross-sectional area, myonuclear number, and myonuclear domain size of mechanically isolated single fiber segments of the adult rat plantaris were determined. The fibers were typed on the basis of high-resolution gel electrophoresis for separation of specific myosin heavy chain (MHC) isoforms and grouped as type I(+) (containing some type I MHC with or without any combination of fast MHCs), type IIa(+) (containing some type IIa with or without some type IIx and/or IIb but no type I MHC), and type IIx/b (containing only type IIx and/or IIb MHCs). Type I(+) fibers had a higher myonuclear number than did both fast types of fibers in the control and FO, but not in the FO and treadmill trained, rats. All fiber types in both FO groups had a significantly larger (36-90%) cross-sectional area and a significantly higher (61-109%) myonuclear number than did control. The average myonuclear domain size of each fiber type was similar among the three groups, except for a smaller domain size in the type IIx/b fibers of the FO compared with control. In general, these data indicate that during hypertrophy the number of myonuclei increase proportionally to the increase in fiber volume. The maintenance of myonuclear domain size near control values suggests that regulatory mechanisms exist that ensure a tight coupling between the quantity of genetic machinery and the protein requirements of a fiber.  相似文献   

2.
The expression of five myosin heavy chain (MHC) isoforms was analyzed in the rat soleus (Sol) and the deep and superficial medial gastrocnemius (dGM, sGM) muscle after 2 and 4 wk of TTX paralysis by using immunohistochemical techniques. In Sol, after 4 wk of paralysis, fibers containing type I MHC were either pure type I (14%) or also contained developmental (D; 76%), IIa (26%), or IIx (18%) MHC. Values for corresponding fibers in dGM were 8.5, 65, 38, and 22%. Also, by 4 wk an increase was seen in the proportions of fibers expressing IIa MHC in Sol (from 16 to 38%) and dGM (from 24 to 74%). In a region of sGM in control muscles containing pure IIb fibers, a major proportion (86%) remained pure after 4 wk of paralysis, with the remainder coexpressing IIb and IIx. The results indicate that TTX-induced muscle paralysis results in an increase in fibers containing multiple MHC isoforms and that the D isoform appears in a major proportion of these hybrid fibers.  相似文献   

3.
Three adult skeletal muscle sarcomeric myosin heavy chain (MHC) genes have been identified in the rat, suggesting that the expressed native myosin isoforms can be differentiated, in part, on the basis of their MHC composition. This study was undertaken to ascertain whether the five major native isomyosins [3 fast (Fm1, Fm2, Fm3), 1 slow (Sm), and 1 intermediate (Im)], typically expressed in the spectrum of adult rat skeletal muscles comprising the hindlimb, could be further differentiated on the basis of their MHC profiles in addition to their light chain composition. Results show that in muscles comprised exclusively of fast-twitch glycolytic (FG) fibers and consisting of Fm1, Fm2, and Fm3, such as the tensor fasciae latae, only one MHC, designated as fast type IIb, could be resolved. In soleus muscle, comprised of both slow-twitch oxidative and fast-twitch oxidative-glycolytic fibers and expressing Sm and Im, two MHC bands were resolved and designated as slow/cardiac beta-MHC and fast type IIa MHC. In muscles expressing a mixture of all three fiber types and a full complement of isomyosins, as seen in the plantaris, the MHC could be resolved into three bands. Light chain profiles were characterized for each muscle type, as well as for the purified isomyosins. These data suggest that Im (IIa) consists of a mixture of fast and slow light chains, whereas Fm (IIb) and Sm (beta) isoforms consist solely of fast- and slow-type light chains, respectively. Polypeptide mapping of denatured myosin extracted from muscles expressing contrasting isoform phenotypes suggests differences in the MHC primary structure between slow, intermediate, and fast myosin isotypes. These findings demonstrate that 1) Fm, Im, and Sm isoforms are differentiated on the bases of both their heavy and light chain components and 2) each isomyosin is distributed in a characteristic fashion among rat hindlimb skeletal muscles. Furthermore, these data suggest that the ratio of isomyosins in a given muscle or muscle region is of physiological importance to the function of that muscle during muscular activity.  相似文献   

4.
The effects of short-term (4 days) and long-term (60 days) neuromuscular inactivity on myonuclear number, size, and myosin heavy chain (MHC) composition of isolated rat soleus fibers were determined using confocal microscopy and gel electrophoresis. Inactivity was produced via spinal cord isolation (SI), i.e., complete spinal cord transections at a midthoracic and a high sacral level and bilateral deafferentation between the transection sites. Compared with control, there was an increase in the percentage of fibers containing the faster MHC isoforms after 60, but not 4, days of SI. The mean sizes of type I and type I+IIa fibers were 41 and 27% and 66 and 56% smaller after 4 and 60 days of SI, respectively. Thus atrophy occurred earlier than the shift in myosin heavy chain (MHC) profile. The number of myonuclei was approximately 30% higher in type I than type I+IIa fibers in control soleus, but after 60 days of SI these values were similar. The number of myonuclei per millimeter in type I fibers was significantly lower than control after 60 days of SI, whereas there was no change in type I+IIa fibers. Thus myonuclei were eliminated from fibers containing only type I MHC. Because the magnitude of the loss of myonuclei was less than the level of atrophy, the myonuclear domains of both type I and type I+IIa fibers were significantly lower than control. Thus chronic (60 days) inactivity results in smaller, faster fibers that contain a higher than normal amount of DNA per unit of cytoplasm. The absence of activation of muscle fibers that are normally the most active (pure type I fibers) resulted in most, but not all, fibers expressing some fast MHC isoforms. The results also indicate that a loss of myonuclei is not a prerequisite for sustained muscle fiber atrophy.  相似文献   

5.
To further elucidate the pattern of MHC isoform expression in skeletal muscles of large mammals, in this study the skeletal muscles of brown bear, one of the largest mammalian predators with an extraordinary locomotor capacity, were analyzed. Fiber types in longissimus dorsi, triceps brachii caput longum, and rectus femoris muscles were determined according to the myofibrillar ATPase (mATPase) histochemistry and MHC isoform expression, revealed by a set of antibodies specific to MHC isoforms. The oxidative (SDH) and glycolytic enzyme (α‐GPDH) capacity of fibers was demonstrated as well. By mATPase histochemistry five fiber types, i.e., I, IIC, IIA, IIAX, IIX were distinguished. Analyzing the MHC isoform expression, we assume that MHC‐I, ‐IIa, and ‐IIx are expressed in the muscles of adolescent bears. MHC‐I isoform was expressed in Type‐I fibers and coexpressed with presumably ‐IIa isoform, in Type‐IIC fibers. Surprisingly, two antibodies specific to rat MHC‐IIa stained those fast fibers, that were histochemically and immunohistochemically classified as Type IIX. This assumption was additionally confirmed by complete absence of fiber staining with antibody specific to rat MHC‐IIb and all fast fiber staining with antibody that according to our experience recognizes MHC‐IIa and ‐IIx of rat. Furthermore, quite high‐oxidative capacity of all fast fiber types and their weak glycolytic capacity also imply for MHC‐IIa and ‐IIx isoform expression in fast fibers of bear. However, in adult, full‐grown animal, only MHC‐I and MHC‐IIa isoforms were expressed. The expression of only two fast isoforms in bear, like in many other large mammals (humans, cat, dog, goat, cattle, and horse) obviously meets the weight‐bearing and locomotor demands of these mammals. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Based on histochemical and immunohistochemical evidence, horse elbow extensor muscles are composed of two morphologically distinct muscle groups. The long and lateral heads of the triceps brachii are large, predominantly type II (presumed fast) muscles. The long and lateral heads of the triceps together account for 96% of the weight of the elbow extensors (long head of triceps is 81%). The long and lateral heads contain three histochemical fiber types: types I, IIa and IIb. Type I muscle fibers account for approximately 18 and 27% of the fibers in the long and lateral heads of the triceps, respectively. In the lateral head, type IIa and IIb fibers account equally for the remaining 70%, while in the long head of the triceps type IIb fibers predominate (50%) over type IIa fibers (32%). In contrast, the much smaller medial head of the triceps (2% of triceps mass) and the anconeus (2% of mass) contain almost exclusively type I muscle fibers. It is hypothesized that the medial head and anconeus, with their slow fibers, contribute to the postural maintenance of the forelimb by preventing flexion at the elbow joint during passive stance. The larger long and lateral heads, with their generally fast fiber populations, are most likely important during dynamic activity.  相似文献   

7.
Although the association between hypothyroidism and obstructive sleep apnea is well established, the effect of thyroid hormone deficiency on contractile proteins in pharyngeal dilator muscles responsible for maintaining upper airway patency is unknown. In the present study, the effects of hypothyroidism on myosin heavy chain (MHC) expression were examined in the sternohyoid, geniohyoid, and genioglossus muscles of adult rats (n = 20). The relative proportions of MHC isoforms present were determined using MHC-specific monoclonal antibodies and oligonucleotide probes. All control muscles showed a paucity of type I MHC fibers, with greater than 90% of fibers containing fast-twitch type II MHCs. In the genioglossus muscle, a population of non-IIa non-IIb fast-twitch type II fibers (putatively identified as type IIx MHC fibers) were detected. Hypothyroidism induced significant changes in MHC expression in all muscles studied. In the sternohyoid, type I fibers increased from 6.2 to 16.9%, whereas type IIa fibers increased from 25.9 to 30.7%. Type I fibers in the geniohyoid increased from 1.2 to 12.8%, whereas type IIa fibers increased from 34.1 to 42.7%. The genioglossus showed the smallest relative increase in type I expression but the greatest induction of type IIa MHC. None of the muscles examined demonstrated reinduction of embryonic or neonatal MHC in response to thyroid hormone deficiency. In summary, hypothyroidism alters the MHC profile of pharyngeal dilators in a muscle-specific manner. These changes may play a role in the pathogenesis of obstructive apnea in hypothyroid patients.  相似文献   

8.
The proportions of muscle fibers of different phenotype in the adult rabbit masseter differ greatly in different sexes. These sex differences are not apparent in young adults, but arise under the influence of testosterone in the males. We examined whether this switch occurred during a critical period of postnatal development. Testosterone was administered to young adults 1, 2, or 4 mo after castration, and also to adult females. Samples of masseter muscle were taken at four monthly intervals after the onset of treatment and examined for the expression of different myosin heavy chain (MyHC) isoforms by using a panel of monoclonal antibodies. Despite the length of androgen deprivation, treatment with testosterone produced a marked MyHC isoform switch from alpha-slow/beta to IIa. This male proportion of fibers of different phenotypes persisted well beyond the return of serum testosterone levels to pretreatment levels. Thus brief exposure to testosterone produces a permanent change in the proportions of masseter muscle fibers of different phenotypes, and the capacity for this change is not restricted to a critical period.  相似文献   

9.
Diaphragm capillarity and oxidative capacity during postnatal development.   总被引:1,自引:0,他引:1  
In the cat diaphragm, fiber capillarity, cross-sectional area, and succinate dehydrogenase (SDH) activity were measured across the first 6 wk of postnatal development. Fibers were classified as type I, IIa, IIb, or IIc on the basis of staining for myofibrillar adenosinetriphosphatase (ATPase). Capillaries were identified in sections stained for ATPase at pH 4.2. Fiber cross-sectional areas and SDH activities were quantified using an image-processing system. During postnatal development, the proportions of type I fibers increased while type II fibers decreased. At birth, all type II fibers were IIc. From the 1st to the 2nd postnatal wk, the proportion of type IIc fibers decreased while the numbers of IIa and IIb increased. Thereafter the proportion of type IIb fibers continued to increase while the number of IIa steadily declined. At birth, capillarity, cross-sectional areas, and SDH activities of type I and II fibers were low compared with other postnatal age groups. Fiber cross-sectional areas increased progressively with age. The number of capillaries surrounding type I and II fibers increased markedly by the 2nd wk and then continued to increase at a slower rate. The number of capillaries per fiber area reached a peak by the 2nd wk and then declined as fiber cross-sectional area increased. Postnatal changes in capillarity depended on fiber type, being greatest in IIb. SDH activities of type I and II fibers were initially low during the first 2 postnatal wk and then peaked by the 3rd wk. After the 6th wk, fiber SDH activities decreased to adult values. Among the type II fibers, IIb showed the greatest change in SDH activity during early postnatal development.  相似文献   

10.
Exercise has been shown to be effective in preventing glucocorticoid-induced atrophy in muscles containing high proportions of type II or fast-twitch fibers. This investigation was undertaken to further evaluate this response in type IIa and IIb fibers, determined by histochemical staining for myofibrillar adenosinetriphosphatase with alkaline and acid preincubation. Steroid [cortisol acetate (CA), 100 mg/kg body wt] and exercise (running 90 min/day, 29 m/min) treatments were initiated simultaneously for 11 consecutive days in female rats. Fiber distribution and area measurements were performed in a deep and superficial region of plantaris muscle. The exercise regimen spared approximately 40% of the CA-induced plantaris muscle atrophy. In the deep region, the fiber population, which contained approximately 13% type I (slow-twitch), 24% type IIa, and 63% IIb fibers, was not affected by either treatment. In the superficial section, which consisted solely of type II fibers, the proportion of type IIa fibers was higher (27 vs. 9%, P less than 0.01) in the steroid- than in the vehicle-treated groups. Within each region, type IIa fibers were less susceptible to atrophy than type IIb fibers, and within each fiber type, the deep region had less atrophy than the superficial region. Type I fibers were unchanged by steroid treatment. For type IIa fibers, exercise prevented 100% of the atrophy in the deep region and 50% in the superficial region. For type IIb fibers, the activity spared 67 and 40% of the atrophy in these same regions, respectively. These results show that glucocorticoids are capable of changing the myosin phenotype.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Roy, Roland R., Robert J. Talmadge, Kenneth Fox, MichaelLee, Aki Ishihara, and V. Reggie Edgerton. Modulation of MHC isoforms in functionally overloaded and exercised rat plantaris fibers.J. Appl. Physiol. 83(1): 280-290, 1997.The effects of 1 and 10 wk of functional overload (FO) of therat plantaris with (FOTr) andwithout daily endurance treadmill training on its myosin heavy chain(MHC) composition were studied. After 1 and 10 wk of FO, plantaris masswas 22 and 56% greater in FO and 37 and 94% greater, respectively, inFOTr rats compared withage-matched controls. At 1 wk, pure type I and pure type IIa MHC fiberswere hypertrophied in FO (39 and 44%) andFOTr (70 and 87%) rats. By 10 wkall fiber types comprising >5% of the fibers sampled showed ahypertrophic response in both FO groups. One week of FO increased thepercentage of hybrid (containing both type I and type IIa MHC) fibersand of fibers containing embryonic MHC. By 10 wk, the percentage ofpure type I MHC fibers was ~40% in both FO groups compared with 15%in controls, and the percentage of fibers containing embryonic MHC wassimilar to that in controls. Sodium dodecyl sulfate-polyacrylamide gelelectrophoresis analyses showed an increase in type I MHC and adecrease in type IIb MHC in both FO groups at 10 wk, whereas littlechange was observed at 1 wk. These data are consistent with hypertrophyand transformation from faster to slower MHC isoforms in chronicallyoverloaded muscles. The additional overload imposed by daily endurancetreadmill training employed in this study (1.6 km/day; 10% incline)results in a larger hypertrophic response but appears to have a minimaleffect on the MHC adaptations.

  相似文献   

12.
We studied muscle fibers by quantitative biochemistry to determine whether metabolic capacity varied among fibers of a given type as a function of their anatomic location. Muscles were selected from both contiguous and diverse anatomic regions within the rats studied. The individual fibers, classified into myosin ATPase fiber types by histochemical means, were assessed for fiber diameters and analyzed for the activities of enzymes representing major energy pathways: malate dehydrogenase (MDH, oxidative), lactate dehydrogenase (LDH, glycolytic), and adenylokinase (AK, high-energy phosphate metabolism). We found that neither the average activities of each of the three enzymes nor the fiber diameters varied in Type I or Type IIa fibers selected from superficial to deep portions of the triceps surae of the hindlimb. However, the IIb fibers in the deep region of this muscle group had significantly greater oxidative capacity, less glycolytic capacity, and smaller diameters than the superficially situated IIb fibers. Type IIa fibers in lateral gastrocnemius, extensor digitorum longus, psoas, diaphragm, biceps brachii, superficial masseter, and superior rectus muscles were highly variable in both diameter and enzyme profiles, with a correlation between MDH activity and fiber diameter. Therefore, our results show that both intermuscular and intramuscular metabolic variations exist in muscle fibers of a given type.  相似文献   

13.
In this study we elucidate the interaction of physical activity with aging as regards skeletal muscle fiber distribution and size. Thirty-three male athletes and 42 normally active counterparts served as subjects. They were assigned to younger (less than 25.5 years) and older (greater than 25.5 years) subgroups. Serial cross-sections from muscle biopsy samples (musculus vastus lateralis) were stained to distinguish fiber type: fast glycolytic (type IIb), fast oxidative-glycolytic (type IIa), or slow oxidative (type I). We also measured fiber diameters. A greater mean diameter of type I fibers was seen in older as opposed to younger athletes. Older controls had a smaller mean diameter of type IIb fibers than did younger controls. Athletes had a smaller mean percentage of type IIa fibers and a greater mean percentage of type I fibers than did controls. There was a greater mean percentage of type I fibers in older as opposed to younger controls, but this was not the case in athletes. Athletes may have larger fibers and a greater percentage of type I fibers at the expense of type IIa fibers. Atrophy of fibers with aging might be retarded by training, which might also reduce the age-associated rate of type IIb percentage loss and type I percentage gain.  相似文献   

14.
Masculinization of the larynx in Xenopus laevis frogs is essential for the performance of male courtship song. During postmetamorphic (PM) development, the initially female-like phenotype of laryngeal muscle (slow and fast twitch fibers) is converted to the masculine form (entirely fast twitch) under the influence of androgenic steroids. To explore the molecular basis of androgen-directed masculinization, we have isolated cDNA clones encoding portions of a new Xenopus myosin heavy chain (MHC) gene. We have detected expression of this gene only in laryngeal muscle and specifically in males. All adult male laryngeal muscle fibers express the laryngeal myosin (LM). Adult female laryngeal muscle expresses LM only in some fibers. Expression of LM during PM development was examined using Northern blots and in situ hybridization. Males express higher levels of LM than females throughout PM development and attain adult levels by PM3. In females, LM expression peaks transiently at PM2. Treatment of juvenile female frogs with the androgen dihydrotestosterone masculinizes LM expression. Thus, LM appears to be a male-specific, testosterone-regulated MHC isoform in Xenopus laevis. The LM gene will permit analysis of androgen-directed sexual differentiation in this highly sexually dimorphic tissue.  相似文献   

15.
The purpose of this study was to investigate potential differences in single-fiber contractile physiology of fibers with the same myosin heavy chain isoform (MHC I and MHC IIa) originating from different muscles. Vastus lateralis (VL) and soleus biopsies were obtained from 27 recreationally active females (31 +/- 1 yr, 59 +/- 1 kg). A total of 943 single fibers (MHC I = 562; MHC IIa = 301) were isolated and examined for diameter, peak tension (Po), shortening velocity (Vo), and power. The soleus had larger (P < 0.05) fibers (MHC I +18%; MHC IIa +19%), higher MHC I Vo (+13%), and higher MHC I Po (+18%) compared with fibers from the VL. In contrast, fibers from the VL had higher (P < 0.05) specific tension (MHC I +18%; MHC IIa +20%), and MHC I normalized power (+25%) compared with the soleus. There was a trend for MHC IIa soleus fibers to have higher Vo [MHC IIa +13% (P = 0.058)], whereas VL MHC IIa fibers showed a trend for higher normalized power compared with soleus fibers [MHC IIa +33% (P = 0.079)]. No differences in absolute power were detected between muscles. These data highlight muscle-specific differences in single-fiber contractile function that should serve as a scientific basis for consideration when extending observations of skeletal muscle tissue from one muscle of interest to other muscles of origin. This is important when examining skeletal muscle adaptation to physical states such as aging, unloading, and training.  相似文献   

16.
In Xenopus laevis, the sexual differentiation of the neuromuscular system responsible for courtship song is controlled by testicular androgen secretion. To explore the sensitivity of this system to androgenic stimulation, male and female frogs were gonadectectomized and given testis transplants at seven different developmental stages between the end of metamorphosis and adulthood, grown to sexual maturity, and the laryngeal muscle fibers and motor axons were counted. Muscle fiber and axon numbers in males were not affected by the testicular transplant at any stage. In females, testicular transplants at all developmental stages increased muscle fiber numbers in adulthood. Values attained were, however, significantly less than those of adult intact or testis-transplanted males. Testis transplantation increased laryngeal axon numbers in females to levels equivalent to those of intact males; this effect was obtained at every stage of postmetamorphic development including adulthood. To further explore androgen regulation in adults, males and females were gonadectomized and implanted with silicone tubes containing testosterone propionate for 1.5–3 years and laryngeal muscle fibers and axon numbers compared to those of gonadectomized or sham-operated adult controls. Neither treatment with exogenous androgen nor gonadectomy had any effect on laryngeal muscle fiber or axon number in either males or females; values did not differ from those of sham-operated controls. We conclude that testicular secretions can induce laryngeal muscle fiber and axon addition in females throughout postmetamorphic life. This degree of plasticity, exhibited after the period when adult values are normally attained, stands in contrast to the effects of administration of synthetic androgen and suggests that the degree of plasticity in adult females may be underestimated if exogenous hormones rather than testicular transplants are provided. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Repetitive low frequency stimulation results in potentiation of twitch force development in fast-twitch skeletal muscle due to myosin regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent skeletal muscle myosin light chain kinase (skMLCK). We generated transgenic mice that express an skMLCK CaM biosensor in skeletal muscle to determine whether skMLCK or CaM is limiting to twitch force potentiation. Three transgenic mouse lines exhibited up to 22-fold increases in skMLCK protein expression in fast-twitch extensor digitorum longus muscle containing type IIa and IIb fibers, with comparable expressions in slow-twitch soleus muscle containing type I and IIa fibers. The high expressing lines showed a more rapid RLC phosphorylation and force potentiation in extensor digitorum longus muscle with low frequency electrical stimulation. Surprisingly, overexpression of skMLCK in soleus muscle did not recapitulate the fast-twitch potentiation response despite marked enhancement of both fast-twitch and slow-twitch RLC phosphorylation. Analysis of calmodulin binding to the biosensor showed a frequency-dependent activation to a maximal extent of 60%. Because skMLCK transgene expression is 22-fold greater than the wild-type kinase, skMLCK rather than calmodulin is normally limiting for RLC phosphorylation and twitch force potentiation. The kinase activation rate (10.6 s(-1)) was only 3.6-fold slower than the contraction rate, whereas the inactivation rate (2.8 s(-1)) was 12-fold slower than relaxation. The slower rate of kinase inactivation in vivo with repetitive contractions provides a biochemical memory via RLC phosphorylation. Importantly, RLC phosphorylation plays a prominent role in skeletal muscle force potentiation of fast-twitch type IIb but not type I or IIa fibers.  相似文献   

18.
PGC-1α regulates critical processes in muscle physiology, including mitochondrial biogenesis, lipid metabolism and angiogenesis. Furthermore, PGC-1α was suggested as an important regulator of fiber type determination. However, whether a muscle fiber type-specific PGC-1α content exists, whether PGC-1α content relates to basal levels of mitochondrial content, and whether such relationships are preserved between humans and classically used rodent models are all questions that have been either poorly addressed or never investigated. To address these issues, we investigated the fiber type-specific content of PGC-1α and its relationship to basal mitochondrial content in mouse, rat and human muscles using in situ immunolabeling and histochemical methods on muscle serial cross-sections. Whereas type IIa fibers exhibited the highest PGC-1α in all three species, other fiber types displayed a hierarchy of type IIx>I>IIb in mouse, type I = IIx> IIb in rat, and type IIx>I in human. In terms of mitochondrial content, we observed a hierarchy of IIa>IIx>I>IIb in mouse, IIa >I>IIx> IIb in rat, and I>IIa> IIx in human skeletal muscle. We also found in rat skeletal muscle that type I fibers displayed the highest capillarization followed by type IIa >IIx>IIb. Finally, we found in human skeletal muscle that type I fibers display the highest lipid content, followed by type IIa>IIx. Altogether, our results reveal that (i) the fiber type-specific PGC-1α and mitochondrial contents were only matched in mouse, (ii) the patterns of PGC-1α and mitochondrial contents observed in mice and rats do not correspond to that seen in humans in several respects, and (iii) the classical phenotypes thought to be regulated by PGC-1α do not vary exclusively as a function of PGC-1α content in rat and human muscles.  相似文献   

19.
The aim of this project was to develop a method to assess fiber type specific protein content across the continuum of human skeletal muscle fibers. Individual vastus lateralis muscle fibers (n = 264) were clipped into two portions: one for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) fiber typing and one for Western blot protein identification. Following fiber type determination, fiber segments were combined into fiber type specific pools (~20 fibers/pool) and measured for total protein quantity, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), citrate synthase (CS), and total p38 content. GAPDH content was 64, 54, 160, and 138% more abundant in myosin heavy chain (MHC) I/IIa, MHC IIa, MHC IIa/IIx, and MHC IIx fibers, respectively, when compared with MHC I. Inversely, CS content was 528, 472, 242, and 47% more abundant in MHC I, MHC I/IIa, MHC IIa, and MHC IIa/IIx fibers, respectively, when compared with MHC IIx. Total p38 content was 87% greater in MHC IIa versus MHC I fibers. These data and this approach establish a reliable method for human skeletal muscle fiber type specific protein analysis. Initial results show that particular proteins exist in a hierarchal fashion throughout the continuum of human skeletal muscle fiber types, further highlighting the necessity of fiber type specific analysis.  相似文献   

20.
10.1152/ japplphysiol.00832.2001.-To examine the effects of gene inactivation on the plasticity of skeletal muscle, mice null for a specific myosin heavy chain (MHC) isoform were subjected to a voluntary wheel-running paradigm. Despite reduced running performance compared with nontransgenic C57BL/6 mice (NTG), both MHC IIb and MHC IId/x null animals exhibited increased muscle fiber size and muscle oxidative capacity with wheel running. In the MHC IIb null animals, there was no significant change in the percentage of muscle fibers expressing a particular MHC isoform with voluntary wheel running at any time point. In MHC IId/x null mice, wheel running produced a significant increase in the percentage of fibers expressing MHC IIa and MHC I and a significant decrease in the percentage of fibers expressing MHC IIb. Muscle pathology was not affected by wheel running for either MHC null strain. In summary, despite their phenotypes, MHC null mice do engage in voluntary wheel running. Although this wheel-running activity is lessened compared with NTG, there is evidence of distinct patterns of muscle adaptation in both null strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号