首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
在细菌和植物中,O-乙酰丝氨酸硫解酶(OASTL)和丝氨酸乙酰转移酶(SAT)的结合形成了半胱氨酸合成酶复合物(CSC),这个酶复合体在硫同化和半胱氨酸生物合成中起调节作用。综述植物和微生物中CSC的结构、组装形成过程及其调控机制的研究进展。  相似文献   

2.
目的:基于钙黄绿素-铜(Ⅱ)荧光体系测定乙酰半胱氨酸。方法:在pH=8.0的Na2HPO.412H2O-KH2PO4缓冲液中,以492 nm为激发波长,520 nm为发射波长测定乙酰半胱氨酸溶液的荧光强度。结果:在pH=8.0的Na2HPO.412H2O-KH2PO4缓冲液中,二价铜离子与钙黄绿素配位引起荧光猝灭。由于乙酰半胱氨酸中巯基上的硫离子与Cu2+的亲和力很强,可从钙黄绿素-铜(Ⅱ)的络合物中夺取铜离子而使钙黄绿素游离出来,从而使体系的荧光得以恢复,并且荧光恢复的程度与加入乙酰半胱氨酸的量在一定范围内成线性。结论:建立了一种测定乙酰半胱氨酸的荧光分析新方法,该方法的线性范围为6.0 10-6~1.4 10-5 mol/L,检出限为4.010-6 mol/L。  相似文献   

3.
目的:基于钙黄绿素-铜(Ⅱ)荧光体系测定乙酰半胱氨酸。方法:在pH=8.0的Na2HPO.412H2O-KH2PO4缓冲液中,以492 nm为激发波长,520 nm为发射波长测定乙酰半胱氨酸溶液的荧光强度。结果:在pH=8.0的Na2HPO.412H2O-KH2PO4缓冲液中,二价铜离子与钙黄绿素配位引起荧光猝灭。由于乙酰半胱氨酸中巯基上的硫离子与Cu2+的亲和力很强,可从钙黄绿素-铜(Ⅱ)的络合物中夺取铜离子而使钙黄绿素游离出来,从而使体系的荧光得以恢复,并且荧光恢复的程度与加入乙酰半胱氨酸的量在一定范围内成线性。结论:建立了一种测定乙酰半胱氨酸的荧光分析新方法,该方法的线性范围为6.0 10-6~1.4 10-5 mol/L,检出限为4.010-6 mol/L。  相似文献   

4.
N-乙酰-L-半胱氨酸的合成及其在医药上的应用   总被引:5,自引:1,他引:4  
概述了近几十年来国内外关于N-乙酰-L-半胱氨酸的合成方法及其在医药上的应用。  相似文献   

5.
乙酰CoA是生物体代谢过程中重要的代谢物,也是许多有价值产品合成的前体物质。然而传统途径中通过丙酮酸脱羧生成乙酰CoA碳得率较低,因此构建一条高效的乙酰CoA合成途径具有重要的意义。由于在体外验证文献报道的高碳摩尔得率合成乙酰CoA的苏氨酸循环固碳途径,有较重要的理论意义和应用价值。因此在体外构建了苏氨酸循环固碳途径合成乙酰CoA,通过分段加酶的方式将其在体外进行了验证。在体外验证时,以丙酮酸为底物,则丝氨酸脱氨酶(Tdc B)为循环途径的最后一步反应。结果表明,当加入途径中除丝氨酸脱氨酶之外的酶时,测得的乙酰CoA浓度约1.5 mmol/L,待反应达到平衡时,加入丝氨酸脱氨酶,丝氨酸转化为丙酮酸,丙酮酸再次进入循环,乙酰CoA的量增加了约0.2 mmol/L,由此得出结论在体外苏氨酸循环实现了固碳。  相似文献   

6.
植物乙酰辅酶A羧化酶的分子生物学与基因工程   总被引:16,自引:0,他引:16  
植物中的乙酰辅酶A羧化酶(acetylCoAcarboxylase,ACCase)分两种类型:原核类型的ACCase位于质体中,是脂肪酸合成途径中的关键酶;真核类型的ACCase位于胞质溶胶中,催化形成的产物主要用于长链脂肪酸的合成以及类黄酮等次生代谢产物的合成。但禾本科植物的质体和胞质溶胶中的ACCase都属于真核类型,其中质体中的是环己烯酮类和芳氧苯氧丙酸类等除草剂作用的靶蛋白。文中主要综述了植物中ACCase的生理功能、分子生物学特征及其对两类除草剂的敏感性,并对其基因工程作了展望。  相似文献   

7.
人ov-抑丝酶家族为抑丝酶家族亚系。多数ov-抑丝酶存在细胞内,作为丝氨酸蛋白酶和半胱氨酸蛋白酶抑制剂参与蛋白质加工处理,细胞凋亡,细胞外基质重构,以及保护细胞免疫损伤等。除了蛋白酶抑制作用之外,人ov-抑丝酶家族还是有其它生物学功能。  相似文献   

8.
目的:用生物信息学软件预测出N-乙酰鸟氨酸脱酰基酶的活性中心的金属离子结合位点.方法:选用DEPC、WRK、PMSF、NBS、DTNB 5种化学试剂选择性修饰N-乙酰鸟氨酸脱酰基酶中组氨酸、天冬氨酸、谷氨酸、丝氨酸、色氨酸和半胱氨酸;同时考察Co2、Fe3 、Mg2 、Mn2 、ZN2 、Ni2 、Cu2 等金属离子对酶活性的影响.结果:在DEPC、WRK修饰后,酶的活力明显下降,而PMSF、NBS、DTNB对酶的活力影响不大;说明组氨酸和酸性氨基酸为酶活性中心的必需氨基酸,而丝氨酸残基、色氨酸残基、半胱氨酸残基不参与酶活性中心的组成;Co2 对酶反应有促进作用,验证了生物信息学的预测结果;底物N-乙酰-D,L-蛋氨酸对酶有较好的保护作用,保护作用随浓度增加而增加.结论:本研究为深入研究酶结构与功能的关系提供实验依据,为N-乙酰鸟氨酸脱酰基酶的工业应用提供理论参考.  相似文献   

9.
电渗析法分离提纯N-乙酰-L-半胱氨酸研究   总被引:2,自引:1,他引:1  
使用我校由辐射法制备的高性能离子交换膜HF—1及HF—2,采用电渗析技术对合成所得的N-乙酰-L-半胱氨酸进行了分离提纯,脱盐率>15%,损失率<15%,为工业化应用提供了依据。  相似文献   

10.
中枢神经系统中,丝氨酸消旋酶是5'吡哆醛依赖性酶,通过合成调控D型丝氨酸,参与N-甲基-D-天冬氨酸受体介导的神经发生、突触可塑性及学习记忆的调节。丝氨酸消旋酶表达与活性可以通过转录、翻译、翻译后修饰,小分子配基与蛋白相互作用,亚细胞分布多种方式调节。丝氨酸消旋酶失调影响了精神分裂症、脑损伤及神经退行性疾病等多种中枢神经系统疾病。本文简要介绍丝氨酸消旋酶的结构、分布、调节因素和在中枢神经系统中的生理病理功能,为神经及精神疾病的治疗和药物开发提供了新的思路。  相似文献   

11.
There are two forms of glutamate decarboxylase (GAD) found in the rat brain. One form (form A) does not require exogenous pyridoxal-5'-phosphate (PLP) for activity whereas another form (form B) requires exogenous PLP for activity. These two forms differ greatly in temperature sensitivity, inactivation, and reactivation by the removal and readdition of PLP, electrophoretic mobility, and regional distribution. For instance, forms A and B are inactivated to an extent of 91% and 10%, respectively, by the treatment at 45 degrees C for 30 min; form A is greatly inactivated (77%) by the removal of PLP by aminooxyacetic acid and the readdition of PLP, whereas form B is only slightly inactivated (7%). Forms A and B can be clearly separated by 5% polyacrylamide gel electrophoresis in which form A migrates faster than form B. In all 10 brain regions studied, form A is present in smaller amounts than form B. This difference is greatest in the superior colliculus (the ratio of B to A is about 5), while in the locus coeruleus and cerebellum, forms A and B are present in nearly equal proportion. Forms A and B are similar with respect to relative abundance in hypotonic, isotonic, and hypertonic preparations, inhibition of catalytic activity by a carbonyl-trapping agent, immunochemical properties, and chromatographic patterns in a variety of systems. The significance of forms A and B and PLP in the regulation of gamma-amino-butyric acid (GABA) level is also discussed.  相似文献   

12.
The ability of a stretch of alternating dA-dT to adopt the left-handed Z form has been assessed by examining the behavior of the sequence d(CG)6(TA)4(CG)6 contained in the plasmid pBR322. The structural transition occurring within this sequence as a function of negative superhelicity was analyzed by several methods, including (1) the supercoiling-dependent unwinding of the insert as determined by two-dimensional gel electrophoresis, (2) the binding of anti-Z-DNA antibodies to the insert, (3) the sensitivity of the sequence to a single strand specific endonuclease, and (4) the sensitivity of the insert to digestion by a restriction endonuclease that cuts within the d(CG)6 segments when in the right-handed form. These studies have shown that in negatively supercoiled DNA the two d(CG)6 portions of the insert adopt the Z form, while the central d(TA)4 segment forms an underwound structure with a helical repeat that is best approximated as being intermediate between the B form and the Z form. A statistical mechanical treatment of the unwinding of the insert as a function of negative superhelicity provides an estimate of the minimum free energy required to convert an A-T bp from the B form to the Z form, as well as the free energy associated with the conversion of an A-T bp from the B form to the unwound form. These results strongly indicate that Z DNA is an unfavored structural alternative for stretches of d(AT)n in negatively supercoiled DNA.  相似文献   

13.
14.
In alkaline media the thiamine cyclic form is converted into a thiol form (pK(a) 9.2) with an opened thiazole ring. The thiamine thiol form releases nitric oxide from S-nitrosoglutathione (GSNO). Thiamine disulfide, mixed thiamine disulfide with glutathione, and nitric oxide are produced in the reaction. Free glutathione was recorded in small amounts. The concentration of formed nitric oxide agreed well with the concentration of degraded GSNO. The concentration of released nitric oxide was determined under anaerobic conditions spectrophotometrically by production of nitrosohemoglobin. In air, the release of nitric oxide was recorded by the production of nitrite or the oxidation of oxyhemoglobin to methemoglobin. The concentration of the thiol form in the body under physiological pH values (7.2-7.4) did not exceed 1.5-2.0%. We believe that due to the exchange reactions between the thiamine thiol form and S-nitrosocysteine protein residues, nitric oxide can be released and mixed thiamine-protein disulfides are formed. The mixed thiamine disulfides (including thiamine ester disulfides) as well as the thiamine disulfide form are quite easily reduced by low molecular weight thiols to form the thiamine cyclic form with a closed thiazole ring. A possible role of the thiamine thiol form in releasing deposited nitric oxide from low-molecular-weight S-nitrosothiols and protein S-nitrosothiols and in regulation of blood flow in the vascular bed is discussed.  相似文献   

15.
1. Two major forms of xanthine oxidase are demonstrated for the mouse. On polyacrylamide-gel electrophoresis the duodenal form migrates faster towards the anode than that of the liver. Both forms also differ in their (NH(4))(2)SO(4) precipitation patterns and sucrose-density-gradient molecular-weight determinations. 2. The liver form is fully converted into the duodenal form by incubation at 37 degrees C with 2.5mg of crude trypsin/ml for 1(1/2)h, without loss of activity. The trypsin-treated liver form behaves like the normal duodenal form as characterized by electrophoresis, (NH(4))(2)SO(4) precipitation patterns, and sucrose-density-gradient molecular-weight determinations. 3. Partial conversion is also brought about by purified trypsin and chymotrypsin, but not with beta-carboxypeptidase or lipase. The conversion is inhibited by soya-bean trypsin inhibitor. 4. In embryo mice the duodenal form is similar to the liver form on electrophoresis. 5. These studies indicate, as might be expected, that the duodenal form is a modified version of the liver enzyme, probably caused by proteolytic alteration.  相似文献   

16.
Glycogen phosphorylase in cell-free extracts of Neurospora crassa is activated 10- to 15-fold by incubation with MgATP2?. When the MgATP2? is removed, the active form (a form) reverts to the inactive form (b form). The inactivation requires Mg2+ and is inhibited by NaF. The results confirm that Neurospora crassa glycogen phosphorylase exists in two interconvertible forms and strongly suggests that the interconversion is catalyzed by a kinase and phosphatase. The a form was partially purified. The enzyme has a molecular weight of 320,000. Uridine diphosphate glucose is a linear competitive inhibitor with respect to glucose-1-phosphate and a linear non-competitive inhibitor with respect to glycogen. Glucose-6-phosphate is a hyperbolic (partial) noncompetitive inhibitor with respect to all substrates in both directions. The b form of the enzyme in crude cell-free extracts is stimulated 2- to 3-fold by 5′-AMP. As the b form is purified, the 5′-AMP activation is diminished. The molecular weight of the partially purified “b” form was also 320,000.  相似文献   

17.
Heparin-binding EGF-like growth factor (HB-EGF) is first synthesized as a membrane-anchored form (proHB-EGF), and its soluble form (sHB-EGF) is released by ectodomain shedding from proHB-EGF. To examine the significance of proHB-EGF processing in vivo, we generated mutant mice by targeted gene replacement, expressing either an uncleavable form (HBuc) or a transmembrane domain-truncated form (HBdeltatm) of the molecule. HB(uc/uc) mice developed severe heart failure and enlarged heart valves, phenotypes similar to those in proHB-EGF null mice. On the other hand, mice carrying HBdeltatm exhibited severe hyperplasia in both skin and heart. These results indicate that ectodomain shedding of proHB-EGF is essential for HB-EGF function in vivo, and that this process requires strict control.  相似文献   

18.
Extracts of human spleen contain two immunologically distinguishable forms of glucocerebrosidase: form I is precipitable by polyclonal or monoclonal anti-(placental glucocerebrosidase) antibodies, whereas form II is not [Aerts, J. M. F. G., Donker-Koopman, W. E., Van der Vliet, M. F. K., Jonsson, L. M. V., Ginns, E. I., Murray, G. J., Barranger, J. A., Tager, J. M. & Schram, A. W. (1985) Eur. J. Biochem. 150, 565-574]. The proportion of form II glucocerebrosidase was high in extracts of spleen, liver and kidney and low in extracts of brain, placenta and fibroblasts. Furthermore, the proportion of form II enzyme was higher in a detergent-free aqueous extract of spleen than in a Triton X-100 extract of total spleen or splenic membranes. When form II glucocerebrosidase in a splenic extract was separated from form I enzyme by immunoaffinity chromatography and stored at 4 degrees C, a gradual conversion to form I enzyme occurred. The conversion was almost immediate if 30% (v/v) ethylene glycol was present. In the denatured state both forms of glucocerebrosidase reacted with anti-(placental glucocerebrosidase) antibodies. Form I glucocerebrosidase was stimulated by sodium taurocholate or sphingolipid-activator protein 2 (SAP-2), whereas form II enzyme exhibited maximal activity in the absence of the effectors. The pH activity profile of form II glucocerebrosidase was almost identical to that of form I enzyme in the presence of SAP-2. In the native state, form I glucocerebrosidase had a molecular mass of 60 kDa whereas that of form II glucocerebrosidase was about 200 kDa. After gel-permeation high-performance liquid chromatography of splenic extracts, the fractions with form II glucocerebrosidase contained material cross-reacting with both anti-(placental glucocerebrosidase) and anti-(SAP-2) antibodies. Preincubation of form I glucocerebrosidase with SAP-2 at pH 4.5 led to masking of the epitope on glucocerebrosidase reacting with monoclonal anti-(placental glucocerebrosidase) antibody 2C7. Furthermore, preincubation of form I glucocerebrosidase with monoclonal antibody 2C7 prevented activation of the enzyme by SAP-2. We propose that form I glucocerebrosidase is a monomeric form of the enzyme, whereas form II glucocerebrosidase is a high-Mr complex of the enzyme in association with sphingolipid-activator protein 2.  相似文献   

19.
Paracentrotus lividus eggs contain three separable DNA polymerases (deoxynucleoside triphosphate: DNA deoxynucleotidyltransferase, EC 2.7.7.7.). The two main peaks of activity, designated form I and form II, differ in the following features: 1) form I is able to use poly(dA) as primer-template more efficiently than form II; 2) the initial rate of incorporation of dTTP or dCTP in the absence of other deoxynucleosidetriphosphates (dNTPs) is higher with form I than with form II when the template is DNA or poly(dA,dT); 3) form II is preferentially inhibited by KCl; 4) the two forms show a different optimal Mn2+ concentration for their maximal activity.  相似文献   

20.
In the course of chick neural retina development, several forms of DNA ligase have been found. During embryonic life the major DNA ligase activity that is found at seven days is form I (8.2 S) which gradually decreases and disappears by 14 days after incubation, whereas form II (6.2 S) increases to reach a maximum at the time of hatching. Form II then decreases reaching a constant level by Day 7 and from that time new slow sedimenting forms also appear (forms III and IV). Form III(2 S) is first detectable at seven days and increases up to 90 days, whereas form IV (3 S) is the only form detected in the 17- and 18-month-old and also in the 5-year-old birds. These four forms display different elution patterns on phosphocellulose column chromatography. They also differ in their thermal stability and sensitivity towards N-ethylmaleimide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号