首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human pathogenic Bartonella henselae cause cat scratch disease and vasculoproliferative disorders (e.g. bacillary angiomatosis). Expression of Bartonella adhesin A (BadA) is crucial for bacterial autoagglutination, adhesion to host cells, binding to extracellular matrix proteins and proangiogenic reprogramming via activation of hypoxia inducible factor (HIF)-1. Like the prototypic Yersinia adhesin A, BadA belongs to the class of trimeric autotransporter adhesins and is constructed modularly consisting of a head, a long and repetitive neck-stalk module and a membrane anchor. Until now, the exact biological role of these domains is not known. Here, we analysed the function of the BadA head by truncating the repetitive neck-stalk module of BadA (B. henselae badA(-)/pHN23). Like B. henselae Marseille wild type, B. henselae badA(-)/pHN23 showed autoagglutination, adhesion to collagen and endothelial cells and activation of HIF-1 in host cells. Remarkably, B. henselae badA(-)/pHN23 did not bind to fibronectin (Fn) suggesting a crucial role of the deleted stalk domain in Fn binding. Additionally, the recombinantly expressed BadA head adhered to human umbilical vein endothelial cells and to a lesser degree to epithelial (HeLa 229) cells. Our data suggest that the head represents the major functional domain of BadA responsible for host adhesion and angiogenic reprogramming.  相似文献   

2.
Human pathogenic Bartonella henselae cause cat scratch disease and vasculoproliferative disorders. An important pathogenicity factor of B. henselae is the trimeric autotransporter adhesin Bartonella adhesin A (BadA) which is modularly constructed and consists of a head, a long and repetitive neck‐stalk module with 22 repetitive neck/stalk repeats and a membrane anchor. The BadA head is crucial for bacterial adherence to host cells, binding to several extracellular matrix proteins and for the induction of vascular endothelial growth factor (VEGF) secretion. Here, we analysed the biological role of the BadA stalk in the infection process in greater detail. For this purpose, BadA head‐bearing and headless deletion mutants with different lengths (containing one or four neck/stalk repeats in the neck‐stalk module) were produced and functionally analysed for their ability to bind to fibronectin, collagen and endothelial cells and to induce VEGF secretion. Whereas a head‐bearing short version (one neck/stalk element) of BadA lacks exclusively fibronectin binding, a substantially truncated headless BadA mutant was deficient for all of these biological functions. The expression of a longer headless BadA mutant (four neck/stalk repeats) restored fibronectin and collagen binding, adherence to host cells and the induction of VEGF secretion. Our data suggest that (i) the stalk of BadA is exclusively responsible for fibronectin binding and that (ii) both the head and stalk of BadA mediate adherence to collagen and host cells and the induction of VEGF secretion. This indicates overlapping functions of the BadA head and stalk.  相似文献   

3.
The Gram‐negative, zoonotic pathogen Bartonella henselae is the aetiological agent of cat scratch disease, bacillary angiomatosis and peliosis hepatis in humans. Two pathogenicity factors of B. henselae – each displaying multiple functions in host cell interaction – have been characterized in greater detail: the trimeric autotransporter Bartonella adhesin A (BadA) and the type IV secretion system VirB/D4 (VirB/D4 T4SS). BadA mediates, e.g. binding to fibronectin (Fn), adherence to endothelial cells (ECs) and secretion of vascular endothelial growth factor (VEGF). VirB/D4 translocates several Bartonella effector proteins (Beps) into the cytoplasm of infected ECs, resulting, e.g. in uptake of bacterial aggregates via the invasome structure, inhibition of apoptosis and activation of a proangiogenic phenotype. Despite this knowledge of the individual activities of BadA or VirB/D4 it is unknown whether these major virulence factors affect each other in their specific activities. In this study, expression and function of BadA and VirB/D4 were analysed in a variety of clinical B. henselae isolates. Data revealed that mostisolates have lost expression of either BadA or VirB/D4 during in vitro passages. However, the phenotypic effects of coexpression of both virulence factors was studied in one clinical isolate that was found to stably coexpress BadA and VirB/D4, as well as by ectopic expression of BadA in a strain expressing VirB/D4 but not BadA. BadA, which forms a dense layer on the bacterial surface, negatively affected VirB/D4‐dependent Bep translocation and invasome formation by likely preventing close contact between the bacterial cell envelope and the host cell membrane. In contrast, BadA‐dependent Fn binding, adhesion to ECs and VEGF secretion were not affected by a functional VirB/D4 T4SS. The obtained data imply that the essential virulence factors BadA and VirB/D4 are likely differentially expressed during different stages of the infection cycle of Bartonella.  相似文献   

4.
The Yersinia adhesin A (YadA) is a trimeric autotransporter adhesin of enteric yersiniae. It consists of three major domains: a head mediating adherence to host cells, a stalk involved in serum resistance, and an anchor that forms a membrane pore and is responsible for the autotransport function. The anchor contains a glycine residue, nearly invariant throughout trimeric autotransporter adhesins, that faces the pore lumen. To address the role of this glycine, we replaced it with polar amino acids of increasing side chain size and expressed wild-type and mutant YadA in Escherichia coli. The mutations did not impair the YadA-mediated adhesion to collagen and to host cells or the host cell cytokine production, but they decreased the expression levels and stability of YadA trimers with increasing side chain size. Likewise, autoagglutination and resistance to serum were decreased in these mutants. We found that the periplasmic protease DegP is involved in the degradation of YadA and that in an E. coli degP deletion strain, mutant versions of YadA were expressed almost to wild-type levels. We conclude that the conserved glycine residue affects both the export and the stability of YadA and consequently some of its putative functions in pathogenesis.  相似文献   

5.
Adherence of F18 fimbrial Escherichia coli to porcine intestinal epithelial cells is mediated by the adhesin (FedF) of F18 fimbriae. In a previous study, we demonstrated the specificity of the amino acid residues between 60 and 109 as the receptor binding domain of FedF. In this study, different expression, secretion, and anchoring systems for the receptor binding domain of the FedF adhesin in Lactococcus lactis were evaluated. Two partially overlapping receptor binding domains (42 and 62 amino acid residues) were expressed as fusions with L. lactis subsp. cremoris protein PrtP for evaluation of secretion efficiency. To evaluate the cell surface display of these FedF-PrtP fusions, they were further combined with different lengths of PrtP spacers fused with either the L. lactis AcmA anchor or the PrtP cell wall binding domain. An HtrA-defective L. lactis NZ9000 mutant was constructed to determine its effect on the level of secreted or anchored fusion proteins. Recombinant L. lactis clones secreting the receptor binding domain of F18 fimbriae as a fusion with the H domains of L. lactis protein PrtP were first constructed by using two different signal peptides. FedF-PrtP fusions, directed by the signal sequence of L. brevis SlpA, were throughout found to be secreted at significantly higher quantities than corresponding fusions with the signal peptide of L. lactis Usp45. In the surface display systems tested, the L. lactis AcmA anchor performed significantly better, particularly in the L. lactis NZ9000ΔhtrA strain, compared to the L. lactis PrtP anchor region. Of the cell surface display constructs with the AcmA anchor, only those with the longest PrtP spacer regions resulted in efficient binding of recombinant L. lactis cells to porcine intestinal epithelial cells. These results confirmed that it is possible to efficiently produce the receptor binding domain of the F18 adhesin in a functionally active form in L. lactis.  相似文献   

6.
The extraintestinal pathogen, avian pathogenic E. coli (APEC), known to cause systemic infections in chickens, is responsible for large economic losses in the poultry industry worldwide. In order to identify genes involved in the early essential stages of pathogenesis, namely adhesion and colonization, Signature-tagged mutagenesis (STM) was applied to a previously established lung colonization model of infection by generating and screening a total of 1,800 mutants of an APEC strain IMT5155 (O2:K1:H5; Sequence type complex 95). The study led to the identification of new genes of interest, including two adhesins, one of which coded for a novel APEC fimbrial adhesin (Yqi) not described for its role in APEC pathogenesis to date. Its gene product has been temporarily designated ExPEC Adhesin I (EA/I) until the adhesin-specific receptor is identified. Deletion of the ExPEC adhesin I gene resulted in reduced colonization ability by APEC strain IMT5155 both in vitro and in vivo. Furthermore, complementation of the adhesin gene restored its ability to colonize epithelial cells in vitro. The ExPEC adhesin I protein was successfully expressed in vitro. Electron microscopy of an afimbriate strain E. coli AAEC189 over-expressed with the putative EA/I gene cluster revealed short fimbrial-like appendages protruding out of the bacterial outer membrane. We observed that this adhesin coding gene yqi is prevalent among extraintestinal pathogenic E. coli (ExPEC) isolates, including APEC (54.4%), uropathogenic E. coli (UPEC) (65.9%) and newborn meningitic E. coli (NMEC) (60.0%), and absent in all of the 153 intestinal pathogenic E. coli strains tested, thereby validating the designation of the adhesin as ExPEC Adhesin I. In addition, prevalence of EA/I was most frequently associated with the B2 group of the EcoR classification and ST95 complex of the multi locus sequence typing (MLST) scheme, with evidence of a positive selection within this highly pathogenic complex. This is the first report of the newly identified and functionally characterized ExPEC adhesin I and its significant role during APEC infection in chickens.  相似文献   

7.
Allosteric proteins transition between ‘inactive’ and ‘active’ states. In general, such proteins assume distinct conformational states at the level of secondary, tertiary and/or quaternary structure. Different conformers of an allosteric protein can be antigenically dissimilar and induce antibodies with a highly distinctive specificities and neutralizing functional effects. Here we summarize studies on various functional types of monoclonal antibodies obtained against different allosteric conformers of the mannose-specific bacterial adhesin FimH – the most common cell attachment protein of Escherichia coli and other enterobacterial pathogens. Included are types of antibodies that activate the FimH function via interaction with ligand-induced binding sites or by wedging between domains as well as antibodies that inhibit FimH through orthosteric, parasteric, or novel dynasteric mechanisms. Understanding the molecular mechanism of antibody action against allosteric proteins provides insights on how to design antibodies with a desired functional effect, including those with neutralizing activity against bacterial and viral cell attachment proteins.  相似文献   

8.
Heat-resistant agglutinin 1 (Hra1) is an accessory colonization factor of enteroaggregative Escherichia coli (EAEC) strain 042. Tia, a close homolog of Hra1, is an invasin and adhesin that has been described in enterotoxigenic E. coli. We devised a PCR-restriction fragment length polymorphism screen for the associated genes and found that they occur among 55 (36.7%) of the enteroaggregative E. coli isolates screened, as well as lower proportions of enterotoxigenic, enteropathogenic, enterohemorrhagic, and commensal E. coli isolates. Overall, 25%, 8%, and 3% of 150 EAEC strains harbored hra1 alone, tia alone, or both genes, respectively. One EAEC isolate, 60A, produced an amplicon with a unique restriction profile, distinct from those of hra1 and tia. We cloned and sequenced the full-length agglutinin gene from strain 60A and have designated it hra2. The hra2 gene was not detected in any of 257 diarrheagenic E. coli isolates in our collection but is present in the genome of Salmonella enterica serovar Heidelberg strain SL476. The cloned hra2 gene from strain 60A, which encodes a predicted amino acid sequence that is 64% identical to that of Hra1 and 68% identical to that of Tia, was sufficient to confer adherence on E. coli K-12. We constructed an hra2 deletion mutant of EAEC strain 60A. The mutant was deficient in adherence but not autoaggregation or invasion, pointing to a functional distinction from the autoagglutinin Hra1 and the Tia invasin. Hra1, Tia, and the novel accessory adhesin Hra2 are members of a family of integral outer membrane proteins that confer different colonization-associated phenotypes.  相似文献   

9.
ATP-binding cassette (ABC) transporters are integral membrane proteins that actively transport molecules across cell membranes. In Escherichia coli they consist primarily of import systems that involve in addition to the ABC transporter itself a substrate binding protein and outer membrane receptors or porins, and a number of transporters with varied functions. Recent crystal structures of a number of ATPase domains, substrate binding proteins, and full-length transporters have given new insight in the molecular basis of transport. Bioinformatics approaches allow an approximate identification of all ABC transporters in E. coli and their relation to other known transporters. Computational approaches involving modeling and simulation are beginning to yield insight into the dynamics of the transporters. We summarize the function of the known ABC transporters in E. coli and mechanistic insights from structural and computational studies.  相似文献   

10.
The presence of adhesins is arguably an important determinant of pathogenicity for Uropathogenic Escherichia coli (UPEC). Antimicrobial susceptibilities were tested by agar dilution method, fifteen adhesin genes were detected by polymerase chain reaction, and multilocus sequence typing (MLST) was analyzed in 70 UPEC isolates and 41 commensal E. coli strains. Extended-spectrum β-lactamase (ESBL) was determined with confirmatory test. The prevalence of ESBL-producers in UPEC (53%, 37/70) was higher than the commensal intestinal isolates (7%, 3/41), and 97% (36/37) of the ESBL-producing UPEC harbored bla CTX-M genes. afa was present in 36% (10/28) UPEC isolates from recurrent lower urinary tract infection (UTI), and none in the acute pyelonephritis, acute uncomplicated cystitis or commensal strains (P<0.0001). papG was detected in 28% (20/70) of UPEC isolates, while 5% (2/41) of the commensal strains were papG positive (P = 0.0025), and the prevalence of papG was significantly higher in acute pyelonephritis group (71%) than the other two UTI groups (P<0.0001). The prevalence of flu, yqi, yadN and ygiL was significantly higher in UPEC isolates than in the commensal strains. ESBL-producing UPEC showed a lower prevalence of adhesin genes compared with non-ESBL-producing strains. The MLST profiles were different between UPEC and commensal strains, with ST131 (19%, 13/70) and ST10 (20%, 8/41) being the most common MLSTs, respectively. This study demonstrated that several adhesin genes were more prevalent in UPEC isolates than in commensal E. coli, and afa may be associated with recurrent lower UTI whereas papG is more frequently associated with acute pyelonephritis.  相似文献   

11.
We describe a novel membrane surface display system that allows the anchoring of foreign proteins in the cytoplasmic membrane (CM) of stable, cell wall-less L-form cells of Escherichia coli and Proteus mirabilis. The reporter protein, staphylokinase (Sak), was fused to transmembrane domains of integral membrane proteins from E. coli (lactose permease LacY, preprotein translocase SecY) and P. mirabilis (curved cell morphology protein CcmA). Both L-form strains overexpressed fusion proteins in amounts of 1 to 100 μg ml−1, with higher expression for those with homologous anchor motifs. Various experimental approaches, e.g., cell fractionation, Percoll gradient purification, and solubilization of the CM, demonstrated that the fusion proteins are tightly bound to the CM and do not form aggregates. Trypsin digestion, as well as electron microscopy of immunogold-labeled replicas, confirmed that the protein was localized on the outside surface. The displayed Sak showed functional activity, indicating correct folding. This membrane surface display system features endotoxin-poor organisms and can provide a novel platform for numerous applications.  相似文献   

12.
The influenza A virus M2 polypeptide is a small integral membrane protein that does not contain a cleaved signal sequence, but is unusual in that it assumes the membrane orientation of a class I integral membrane protein with an NH2-terminal ectodomain and a COOH-terminal cytoplasmic tail. To determine the domains of M2 involved in specifying membrane orientation, hybrid genes were constructed and expressed in which regions of the M2 protein were linked to portions of the paramyxovirus HN and SH proteins, two class II integral membrane proteins that adopt the opposite orientation in membranes from M2. A hybrid protein (MgMH) consisting of the M2 NH2-terminal and membrane-spanning domains linked precisely to the HN COOH-terminal ectodomain was found in cells in two forms: integrated into membranes in the M2 topology or completely translocated across the endoplasmic reticulum membrane and ultimately secreted from the cell. The finding of a soluble form suggested that in this hybrid protein the anchor function of the M2 signal/anchor domain can be overridden. A second hybrid which contained the M2 NH2 terminus linked to the HN signal anchor and ectodomain (MgHH) was found in both the M2 and the HN orientation, suggesting that the M2 NH2 terminus was capable of reversing the topology of a class II membrane protein. The exchange of the M2 signal/anchor domain with that of SH resulted in a hybrid protein which assumed only the M2 topology. Thus, all these data suggest that the NH2-terminal 24 residues to M2 are important for directing the unusual membrane topology of the M2 protein. These data are discussed in relationship to the loop model for insertion of proteins into membranes and the role of charged residues as a factor in determining orientation.  相似文献   

13.
Structure of the head of the Bartonella adhesin BadA   总被引:1,自引:0,他引:1  
Trimeric autotransporter adhesins (TAAs) are a major class of proteins by which pathogenic proteobacteria adhere to their hosts. Prominent examples include Yersinia YadA, Haemophilus Hia and Hsf, Moraxella UspA1 and A2, and Neisseria NadA. TAAs also occur in symbiotic and environmental species and presumably represent a general solution to the problem of adhesion in proteobacteria. The general structure of TAAs follows a head-stalk-anchor architecture, where the heads are the primary mediators of attachment and autoagglutination. In the major adhesin of Bartonella henselae, BadA, the head consists of three domains, the N-terminal of which shows strong sequence similarity to the head of Yersinia YadA. The two other domains were not recognizably similar to any protein of known structure. We therefore determined their crystal structure to a resolution of 1.1 A. Both domains are beta-prisms, the N-terminal one formed by interleaved, five-stranded beta-meanders parallel to the trimer axis and the C-terminal one by five-stranded beta-meanders orthogonal to the axis. Despite the absence of statistically significant sequence similarity, the two domains are structurally similar to domains from Haemophilus Hia, albeit in permuted order. Thus, the BadA head appears to be a chimera of domains seen in two other TAAs, YadA and Hia, highlighting the combinatorial evolutionary strategy taken by pathogens.  相似文献   

14.
The Escherichia coli chemoreceptors for serine (Tsr) and aspartate (Tar) and several bacterial class III adenylyl cyclases (ACs) share a common molecular architecture; that is, a membrane anchor that is linked via a cytoplasmic HAMP domain to a C-terminal signal output unit. Functionality of both proteins requires homodimerization. The chemotaxis receptors are well characterized, whereas the typical hexahelical membrane anchor (6TM) of class III ACs, suggested to operate as a channel or transporter, has no known function beyond a membrane anchor. We joined the intramolecular networks of Tsr or Tar and two bacterial ACs, Rv3645 from Mycobacterium tuberculosis and CyaG from Arthrospira platensis, across their signal transmission sites, connecting the chemotaxis receptors via different HAMP domains to the catalytic AC domains. AC activity in the chimeras was inhibited by micromolar concentrations of l-serine or l-aspartate in vitro and in vivo. Single point mutations known to abolish ligand binding in Tar (R69E or T154I) or Tsr (R69E or T156K) abrogated AC regulation. Co-expression of mutant pairs, which functionally complement each other, restored regulation in vitro and in vivo. Taken together, these studies demonstrate chemotaxis receptor-mediated regulation of chimeric bacterial ACs and connect chemical sensing and AC regulation.  相似文献   

15.
The antibiotic chloramphenicol produces modifications in 23S rRNA when bound to ribosomes from the bacterium Escherichia coli and the archaeon Halobacterium halobium and irradiated with 365 nm light. The modifications map to nucleotides m5U747 and C2611/C2612, in domains II and V, respectively, of E.coli 23S rRNA and G2084 (2058 in E.coli numbering) in domain V of H.halobium 23S rRNA. The modification sites overlap with a portion of the macrolide binding site and cluster at the entrance to the peptide exit tunnel. The data correlate with the recently reported chloramphenicol binding site on an archaeal ribosome and suggest that a similar binding site is present on the E.coli ribosome.  相似文献   

16.
Attachment of Entamoeba histolytica to colonic epithelium and a variety of other target cells is mediated by a galactosc/N-acetyl D-galactosamine (Gal/GalNAc) inhibitable adhesin. Seven monoclonal antibodies specific for nonoverlapping epitopes of the 170 kDa subunit have been shown to have distinct effects on adherence. Four of these monoclonal antibodies inhibit or have no effect on amebic adherence while two others enhance amebic adherence. The epitopes recognized by these seven monoclonal antibodies have been mapped to the extracellular cysteine rich region of the 170 kDa subunit. The conformational nature of the epitopes was examined by testing monoclonal antibody reactivity with isolated regions of the 170 kDa subunit expressed as fusion proteins in E. coli and also with denatured native adhesin. These analyses suggested that three of monoclonal antibodies recognized conformational epitopes while the remaining four recognized linear epitopes. The mapping of these monoclonal antibodies have identified functionally important regions of the Gal/GalNAc adhesin and have also shown that recombinant Gal/GalNAc adhesin, when expressed in E. coli, retained at least some of its native conformation.  相似文献   

17.
18.
Type 3 fimbriae are adhesive organelles found in enterobacterial pathogens. The fimbriae promote biofilm formation on biotic and abiotic surfaces; however, the exact identity of the receptor for the type 3 fimbriae adhesin, MrkD, remains elusive. We analyzed naturally occurring structural and functional variabilities of the MrkD adhesin from Klebsiella pneumoniae and Escherichia coli isolates of diverse origins. We identified a total of 33 allelic variants of mrkD among 90 K. pneumoniae isolates and 10 allelic variants among 608 E. coli isolates, encoding 11 and 9 protein variants, respectively. Based on the level of accumulated silent variability between the alleles, mrkD was acquired a relatively long time ago in K. pneumoniae but recently in E. coli. However, unlike K. pneumoniae, mrkD in E. coli is actively evolving under a strong positive selection by accumulation of mutations, often targeting the same positions in the protein. Several naturally occurring MrkD protein variants from E. coli were found to be significantly less adherent when tested in a mannan-binding assay and showed reduced biofilm-forming capacity. Functional examination of the MrkD adhesin in flow chamber experiments determined that it interacts with Saccharomyces cerevisiae cells in a shear-dependent manner, i.e., the binding is catch-bond-like and enhanced under increasing shear conditions. Homology modeling strongly suggested that MrkD has a two-domain structure, comprising a pilin domain anchoring the adhesin to the fimbrial shaft and a lectin domain containing the binding pocket; this is similar to structures found in other catch-bond-forming fimbrial adhesins in enterobacteria.  相似文献   

19.
Adherence of Campylobacter jejuni to its particular host cells is mediated by several pathogen proteins. We screened a transposon-based mutant library of C. jejuni in order to identify clones with an invasion deficient phenotype towards Caco2 cells and detected a mutant with the transposon insertion in gene cj0268c. In vitro characterization of a generated non-random mutant, the mutant complemented with an intact copy of cj0268c and parental strain NCTC 11168 confirmed the relevance of Cj0268c in the invasion process, in particular regarding adherence to host cells. Whereas Cj0268c does not impact autoagglutination or motility of C. jejuni, heterologous expression in E. coli strain DH5α enhanced the potential of the complemented E. coli strain to adhere to Caco2 cells significantly and, thus, indicates that Cj0268c does not need to interact with other C. jejuni proteins to develop its adherence-mediating phenotype. Flow cytometric measurements of E. coli expressing Cj0268c indicate a localization of the protein in the periplasmic space with no access of its C-terminus to the bacterial surface. Since a respective knockout mutant possesses clearly reduced resistance to Triton X-100 treatment, Cj0268c contributes to the stability of the bacterial cell wall. Finally, we could show that the presence of cj0268c seems to be ubiquitous in isolates of C. jejuni and does not correlate with specific clonal groups regarding pathogenicity or pathogen metabolism.  相似文献   

20.
The toxic fragment of Bacillus thuringiensis crystal proteins consists of three distinct structural domains. There is evidence that domain I is involved in pore formation and that domain II is involved in receptor binding and specificity. It has been found that, in some cases, domain III is also important in determining specificity. Furthermore, involvement of domain III in binding has also been reported recently. To investigate the role of toxin domains in the diamondback moth (Plutella xylostella), we used hybrid toxins with domain III substitutions among Cry1C, Cry1E, and Cry1Ab. Neither Cry1E nor G27 (a hybrid with domains I and II from Cry1E and domain III from Cry1C) was toxic, whereas Cry1C and F26 (the reciprocal hybrid) were equally toxic. H04 (a hybrid with domains I and II from Cry1Ab and domain III from Cry1C) showed toxicity that was of a similar level as that of Cry1Ab and significantly higher than that of Cry1C. Binding assays with 125I-Cry1C showed that Cry1C and F26 competed for the same binding sites on midgut membrane vesicles, whereas Cry1E, G27, and H04 did not bind to these sites. Our results show that, in contrast to findings in other insects for the toxins and hybrids used here, toxin specificity as well as specificity of binding to membrane vesicles in the diamondback moth is mediated by domain II (and/or I) and not by domain III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号