首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
《Epigenetics》2013,8(3):437-447
There is ample evidence that exposure to stress during gestation increases the risk of the offspring to develop mood disorders. Brain-derived neurotrophic factor (Bdnf) plays a critical role during neuronal development and is therefore a prime candidate to modulate neuronal signaling in adult offspring of rat dams that were stressed during gestation. In the current study, we tested the hypothesis that alterations in Bdnf expression in prenatally stressed (PNS) offspring are mediated by changes in DNA methylation in exons IV and VI of the Bdnf gene. We observed decreased Bdnf expression in the amygdala and hippocampus of prenatally stressed rats both at weaning and in adulthood. This decrease in Bdnf expression was accompanied by increased DNA methylation in Bdnf exon IV in the amygdala and hippocampus, suggesting that PNS-induced reduction in Bdnf expression may, at least in part, be mediated by increased DNA methylation of Bdnf exon IV. Expression of DNA methyltransferases (Dnmt) 1 and 3a was increased in PNS rats in the amygdala and hippocampus. Our data suggest that PNS induces decreases in Bdnf expression that may at least in part be mediated by increased DNA methylation of Bdnf exon IV.  相似文献   

2.
Prenatal exposure to a maternal low-protein (LP) diet has been known to cause cognitive impairment, learning and memory deficits. However, the underlying mechanisms have not been identified. Herein, we demonstrate that a maternal LP diet causes, in the brains of the neonatal rat offspring, an attenuation in the basal expression of the brain-derived neurotrophic factor (BDNF), a neurotrophin indispensable for learning and memory. Female rats were fed either a 20% normal protein (NP) diet or an 8% LP 3 weeks before breeding and during the gestation period. Maternal LP diet caused a significant reduction in the Bdnf expression in the brains of the neonatal rats. We further found that the maternal LP diet reduced the activation of the cAMP/protein kinase A/cAMP response element binding protein (CREB) signaling pathway. This reduction was associated with a significant decrease in CREB binding to the Bdnf promoters. We also show that prenatal exposure to the maternal LP diet results in an inactive or repressed exon I and exon IV promoter of the Bdnf gene in the brain, as evidenced by fluxes in signatory hallmarks in the enrichment of acetylated and trimethylated histones in the nucleosomes that envelop the exon I and exon IV promoters, causing the Bdnf gene to be refractory to transactivation. Our study is the first to determine the impact of a maternal LP diet on the basal expression of BDNF in the brains of the neonatal rats exposed prenatally to an LP diet.  相似文献   

3.
Stress during pregnancy can induce various psychological disorders in women. However, the association linking psychological stress during pregnancy with abnormal behaviours in females remains largely unknown. We employed a novel psychological stress model by introducing pregnant mice to witness the defeat process of their mated partner (WDPMP) and examined the effects of WDPMP on depression-/anxiety-like behaviours and on the expression of brain-derived neurotrophic factor (BDNF) and miR-206-3p in the hippocampus, medial prefrontal cortex (mPFC) and amygdala. Compared to pregnant control (PC) mice, pregnant stressed (PS) mice showed decreased sucrose preference during the late period of gestation, and after lactation, they spent less time in the open arms of the elevated plus maze and in the light chamber of the light/dark box. After lactation, decreased BDNF expression in both the hippocampus and mPFC of PS mice was found to be associated with enhanced miR-206-3p levels; meanwhile, elevated BDNF associated with decreased miR-206-3p expression was evident in the amygdala of the same PS mice. DNA methylation level in the Bdnf promoter did not show difference between PC and PS mice in the hippocampus. Transfection of miR-206-3p resulted in decreased BDNF levels in vitro. These results suggest that WDPMP stress during gestation can induce long-term mood alterations in pregnant mice, which may correlate with changes in miR-206-3p and BDNF expression in the hippocampus, mPFC and amygdala.  相似文献   

4.
Bisphenol A (BPA), an endocrine disrupting chemical (EDC), is a ubiquitous pollutant. As part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA), we sought to determine whether exposure of Sprague-Dawley rats to 2,500 μg/kg/day BPA (BPA) or 0.5 μg/kg/day ethinyl estradiol (EE) from gestational day 6 through postnatal day 21 induces behavior-relevant gene expression and DNA methylation changes in hippocampus and hypothalamus at adulthood. RNA and DNA were isolated from both regions. Expression of ten genes (Dnmt1, Dnmt3a, Dnmt3b, Esr1, Esr2, Avp, Ar, Oxt, Otr, and Bdnf) presumably altered by early-life BPA/EE exposure was examined. Three genes (Bdnf, Dnmt3b, and Esr1) were studied for DNA methylation changes in their putative 5? promoter regions. Molecular changes in hippocampus were correlated to prior Barnes maze performance, including sniffing correct holes, distance traveled, and velocity. Exposure to BPA and/or EE disrupted patterns of sexually dimorphic gene expression/promoter DNA methylation observed in hippocampus and hypothalamus of controls. In the hippocampus of female offspring, BPA exposure resulted in hypermethylation of the putative 5? promoter region of Bdnf, while EE exposure induced hypomethylation. Bdnf methylation was weakly associated with Bdnf expression in hippocampi of female rats. Hippocampal Bdnf expression in females showed a weak negative association with sniffing correct hole in Barnes maze. Hippocampal expression of Avp, Esr2, Oxt, and Otr was strongly associated with velocity of control rats in Barnes maze. Findings suggest BPA exposure induced non-EE-like gene expression and epigenetic changes in adult rat hippocampi, a region involved in spatial navigation.  相似文献   

5.
Highly specific activity-dependent neuronal responses are necessary for modulating synapses to facilitate learning and memory. We present evidence linking a number of important processes involved in regulating synaptic plasticity, suggesting a mechanistic pathway whereby activity-dependent signaling, likely through protein kinase C (PKC)-mediated phosphorylation of HuD, can relieve basal repression of Bdnf mRNA translation in dendrites, allowing for increased TrkB signaling and synaptic remodeling. We demonstrate that the neuronal ELAV family of RNA binding proteins associates in vivo with several Bdnf mRNA isoforms present in the adult brain in an activity-dependent manner, and that one member, HuD, interacts directly with sequences in the long Bdnf 3'' untranslated region (3''UTR) and co-localizes with Bdnf mRNA in dendrites of hippocampal neurons. Activation of PKC leads to increased dendritic translation of mRNAs containing the long Bdnf 3''UTR, a process that is dependent on the presence of HuD and its phosphorylation at threonine residues 149 and/or 165. Thus, we found a direct effect of HuD on regulating translation of dendritic Bdnf mRNAs to mediate local and activity-dependent increases in dendritic BDNF synthesis.  相似文献   

6.
Worldwide, more than 1 in 10 infants is born prior to 37 weeks gestation. Preterm birth can lead to increased mortality risk and poor life-long health and neurodevelopmental outcomes. Whether environmental risk factors affect preterm birth through epigenetic phenomena is largely unstudied. We sought to determine whether preterm risk factors, such as smoke exposure and education, were associated with cervical DNA methylation in the prostaglandin E receptor 2 gene (PTGER2) and a repetitive element, long interspersed nuclear element-1 Homo sapiens-specific (LINE 1-HS). Second, we aimed to determine whether mid-pregnancy DNA methylation of these regions in cervical samples could predict the length of gestation. We obtained a cervical swab between 16–19 weeks gestation from 80 women participating in a Mexico City birth cohort, used pyrosequencing to analyze DNA methylation of PTGER2 and LINE 1-HS, and examined associations with maternal covariates. We used accelerated failure time models to analyze associations of DNA methylation with the length of gestation. DNA methylation of both sequences was associated with Pap smear inflammation. LINE 1-HS methylation was associated with smoke exposure, BMI and parity. In adjusted models, gestations were 3.3 days longer (95%CI 0.6, 6.0) for each interquartile range of PTGER2 DNA methylation. Higher LINE 1-HS methylation was associated with shorter gestations (-3.3 days, 95%CI -6.5, -0.2). In conclusion, cervical DNA methylation was associated with risk factors for preterm birth and the length of gestation.  相似文献   

7.
Song L  Zheng J  Li H  Jia N  Suo Z  Cai Q  Bai Z  Cheng D  Zhu Z 《Neurochemical research》2009,34(4):739-745
Mitochondrion, the primary source of reactive oxygen species (ROS), is also the target of ROS. 8-Hydroxy-2′-deoxyguanosine (8-OH-dG) is the major end-product of damaged DNA caused by ROS. In our previous studies, we showed that prenatal stress (PNS) preferentially caused cognitive dysfunction and increased ROS in the hippocampus of female offspring rats. The present study aimed to determine 8-OH-dG level of mitochondria in order to elucidate the mechanism of hippocampal pyramidal neuronal damage and cognitive dysfunction induced by PNS. Pregnant rats were divided into two groups: control group (undisturbed) and PNS group (exposed to a restraint stress for 7 days at the late stage of gestation). Offspring rats were divided into four groups: female-control group, male-control group, female-stress group, male-stress group and used at 30-day-old after their birth. The content of 8-OH-dG was determined by high performance liquid chromatography-electrochemical detection (HPLC-ECD). The results showed that the contents of 8-OH-dG in female and male prenatal stressed offspring were significantly higher than that in their respective controls (< 0.001). 8-OH-dG level was significantly higher in the female-stress group than in the male-stress group (< 0.05), whereas there was no any gender-dependent difference in the control groups. These results suggest that accumulation of oxidative mitochondrial DNA damage may play an important role in PNS-induced cognitive dysfunction in female offspring rats. Special issue article in honor of Dr. Akitane Mori.  相似文献   

8.
Acute exercise has been shown to improve memory in humans. Potential mechanisms include increased Bdnf expression, noradrenergic activity and modification of glutamate receptors. Because mice are commonly used to study exercise and brain plasticity, it is important to explore how acute exercise impacts behavior in this model. C57BL/6J mice were assigned to three groups: control, moderate‐intensity running, and high‐intensity running. Control mice were placed on a stationary treadmill for 30 minutes and moderate‐ and high‐intensity mice ran for 30 minutes at 12 and 15‐17 m/min, respectively. Mice were sacrificed immediately after running and the hippocampus removed. Total Bdnf, Bdnf exon IV, and glutamate receptor subunits were quantified with quantitative polymerase chain reaction. Total and phosphorylated GluR1 (Ser845 and Ser831) protein was quantified following immunoblotting. Utilizing the same protocol for control and high‐intensity running, object location memory was examined in a separate cohort of mice. Anxiety‐like behavior was assessed in the open field task (OFT) in a third cohort of mice that were separated into four groups: control‐saline, control‐DSP‐4, acute exercise‐saline, and acute exercise‐DSP‐4. DSP‐4 was used to lesion the central noradrenergic system. We observed higher Bdnf IV mRNA in high‐intensity runners compared to controls, but no effects of acute exercise on memory. In the OFT, runners traveled less distance and spent more time grooming than controls. DSP‐4 did not attenuate the effects of exercise. A single bout of exercise increases Bdnf IV mRNA in an intensity‐dependent manner; however, high‐intensity running reduces exploratory behavior in C57BL/6J mice.  相似文献   

9.
10.
Maternal fructose consumption affects the metabolic functions of offspring later in life. However, the molecular mechanism remains poorly understood. Differences of microRNA expression profile and DNA methylation status are a candidate mechanism to explain the developmental programming that contributes to the development of a metabolic disorder. This study examined the transgenerational effect of maternal fructose consumption from the perspective of epigenetic modification. To do this, we collected serum and liver tissues from male offspring rats that were exposed to maternal distilled water or 20% fructose water during gestation and lactation. A decreased serum high-density lipoprotein cholesterol (HDL-C) level was observed in the offspring of fructose-fed dams at postnatal day (PD) 160. Given research indicating a role of liver X receptor alpha (LXRA) in cholesterol metabolism, we analyzed Lxra expression. Real-time polymerase chain reaction analysis demonstrated that offspring that were delivered from fructose-fed dams exhibited decreased Lxra gene expression in their liver tissue. There is a well-established association between Lxra expression and the level of DNA methylation and miR-206 expression. Pyrosequencing assays revealed no differences in the level of DNA methylation in the Lxra promoter region, whereas miR-206 expression was increased in the liver at PD 60 and 160. Our data indicate that early-life exposure to maternal fructose results in changing of miR-206 expression level in the liver that suppresses the expression of Lxra. This phenomenon may be associated with the decreased serum HDL-C level in offspring.  相似文献   

11.
12.
13.
To explore the effects of maternal nutrition on offspring muscle characteristics, a total of 56 sows were assigned to one of the four dietary groups during gestation: control (CON), or control diets supplemented with methyl donor (MET), bisphenol A (BPA), and combined BPA and MET (BPA+MET). Compared with CON offspring, MET offspring showed a higher meat redness value, but lower glycogen content in the longissimus thoracis (LT). Moreover, compared with CON offspring, MET offspring showed lower LT glycogen synthase (GS) mRNA levels at birth and the finishing stage, and increased methylation at the GS promoter. Prenatal BPA exposure reduced the pH and redness value of meat, but increased the lightness value, lactate content, glycolytic potential and lactate dehydrogenase (LDH) enzyme activity in the LT muscle. Prenatal BPA exposure increased LDH mRNA levels in the LT muscle at birth and the finishing stage, and reduced methylation at the LDH promoter. Thus, maternal MET affects muscle GS and LDH expression via DNA methylation, thereby resulting in persistent effects on pork quality.  相似文献   

14.
15.
DNA methylation is mediated by DNA methyltransferases (DNMTs) that add a methyl group to the 5′-carbon of cytosine. The enzyme methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate in the rate-limiting step of the cycle involving the methyl donor S-adenosyl-L-methionine (SAM). The MTHFR C677T polymorphism results in a thermolabile enzyme with reduced activity that is predicted to influence the DNA methylation status. In this study, we investigated the impact of the MTHFR C677T polymorphism on the global DNA methylation of oral epithelial cells obtained from 54 healthy subjects. There were no significant differences in global DNA methylation among the MTHFR CC, CT and TT genotypes (p = 0.75; Kruskal-Wallis test).  相似文献   

16.
17.
Alcohol exposure in utero can result in Fetal Alcohol Spectrums Disorders (FASD). Measures of hippocampal neuroplasticity, including long‐term potentiation, synaptic and dendritic organization, and adult neurogenesis, are consistently disrupted in rodent models of FASD. The current study investigated whether third trimester‐equivalent binge‐like alcohol exposure (AE) [postnatal days (PD) 4–9] affects dendritic morphology of immature dentate gyrus granule cells, and brain‐derived neurotrophic factor (Bdnf ) gene expression and DNA methylation in hippocampal tissue in adult male rats. To understand immediate impact of alcohol, DNA methylation was measured in the PD10 hippocampus. In addition, two behavioral interventions, wheel running (WR) and environmental complexity (EC), were utilized as rehabilitative therapies for alcohol‐induced deficits. AE significantly decreased dendritic complexity of the immature neurons, demonstrating the long‐lasting impact of neonatal alcohol exposure on dendritic morphology of immature neurons in the hippocampus. Both housing conditions robustly enhanced dendritic complexity in the AE animals. While Bdnf exon I DNA methylation was lower in the AE and sham‐intubated animals compared with suckle controls on PD10, alterations to Bdnf DNA methylation and gene expression levels were not present at PD72. In control animals, exercise, but not exercise followed by housing in EC, resulted in higher levels of hippocampal Bdnf gene expression and lower DNA methylation. These studies demonstrate the long‐lasting negative impact of developmental alcohol exposure on hippocampal dendritic morphology and support the implementation of exercise and complex environments as therapeutic interventions for individuals with FASD. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 708–725, 2017  相似文献   

18.
19.
The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first 8 days of gestation (GD 0.5-8.5). Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P) 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60): we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in different tissue types later in life.  相似文献   

20.

Background

Alpha-synuclein (α-Syn) is a small neuronal protein that has been found to be expressed throughout the brain. It has been shown that α-Syn regulates the homeostasis of monoamine neurotransmitters and is involved in various degenerative and affective disorders. There is indication that α-Syn may regulate expression of the brain-derived neurotropic factor (BDNF) which plays an important role in the mood disorders.

Methodology/Principal Findings

The study aimed to analyze the mRNA levels of Snca and Bdnf genes in the ventral tegmental area (VTA) and raphe nuclei of the midbrain in male mice that had each won or defeated 20 encounters (20-time winners and 20-time losers, respectively) in daily agonistic interactions. Groups of animals that had the same winning and losing track record followed by a no-fight period for 14 days (no-fighting winners and no-fighting losers) were also studied. Snca mRNA levels were increased in the raphe nuclei in the 20-time losers and in the VTA of the 20-time winners. After no-fight period Snca mRNA levels decreased in both groups. Snca mRNA levels were similar to the control level in the VTA of the 20-time losers and in the raphe nuclei of the 20-time winners. However Snca gene expression increased in these areas in the no-fighting winners and no-fighting losers in comparison with respective mRNA levels in animals before no-fight period. Bdnf mRNA levels increased in VTA of 20-time winners. Significant positive correlations were found between the mRNA levels of Snca and Bdnf genes in the raphe nuclei.

Conclusions/Significance

Social experience affects Snca gene expression depending on brain areas and functional activity of monoaminergic systems in chronically victorious or defeated mice. These findings may be useful for understanding the mechanisms of forming different alpha-synucleinopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号