首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
microRNAs (miRNAs) are small non-coding RNAs that regulate mRNA stability and translation through the action of the RNAi-induced silencing complex (RISC). Our current understanding of miRNA function is inferred largely from studies of the effects of miRNAs on steady-state mRNA levels and from seed match conservation and context in putative targets. Here we have taken a more direct approach to these issues by comprehensively assessing the miRNAs and mRNAs that are physically associated with Argonaute 2 (Ago2), which is a core RISC component. We transfected HEK293T cells with epitope-tagged Ago2, immunopurified Ago2 together with any associated miRNAs and mRNAs, and quantitatively determined the levels of these RNAs by microarray analyses. We found that Ago2 immunopurified samples contained a representative repertoire of the cell's miRNAs and a select subset of the cell's total mRNAs. Transfection of the miRNAs miR-1 and miR-124 caused significant changes in the association of scores of mRNAs with Ago2. The mRNAs whose association with Ago2 increased upon miRNA expression were much more likely to contain specific miRNA seed matches and to have their overall mRNA levels decrease in response to the miRNA transfection than expected by chance. Hundreds of mRNAs were recruited to Ago2 by each miRNA via seed sequences in 3'-untranslated regions and coding sequences and a few mRNAs appear to be targeted via seed sequences in 5'-untranslated regions. Microarray analysis of Ago2 immunopurified samples provides a simple, direct method for experimentally identifying the targets of miRNAs and for elucidating roles of miRNAs in cellular regulation.  相似文献   

2.
New microRNAs from mouse and human   总被引:46,自引:1,他引:45       下载免费PDF全文
MicroRNAs (miRNAs) represent a new class of noncoding RNAs encoded in the genomes of plants, invertebrates, and vertebrates. MicroRNAs regulate translation and stability of target mRNAs based on (partial) sequence complementarity. Although the number of newly identified miRNAs is still increasing, target mRNAs of animal miRNAs remain to be identified. Here we describe 31 novel miRNAs that were identified by cloning from mouse tissues and the human Saos-2 cell line. Fifty-three percent of all known mouse and human miRNAs have homologs in Fugu rubripes (pufferfish) or Danio rerio (zebrafish), of which almost half also have a homolog in Caenorhabditis elegans or Drosophila melanogaster. Because of the recurring identification of already known miRNAs and the unavoidable background of ribosomal RNA breakdown products, it is believed that not many more miRNAs may be identified by cloning. A comprehensive collection of miRNAs is important for assisting bioinformatics target mRNA identification and comprehensive genome annotation.  相似文献   

3.
4.
5.
6.
7.
8.
9.
The mechanisms of latent tuberculosis (TB) infection remain elusive. Roles of microRNA (miRNA) have been highlighted in pathogen–host interactions recently. To identify miRNAs involved in the immune response to TB, expression profiles of miRNAs in CD4+ T cells from patients with latent TB, active TB and healthy controls were investigated by microarray assay and validated by RT‐qPCR. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to analyse the significant functions and involvement in signalling pathways of the differentially expressed miRNAs. To identify potential target genes for miR‐29, interferon‐γ (IFN‐γ) mRNA expression was measured by RT‐qPCR. Our results showed that 27 miRNAs were deregulated among the three groups. RT‐qPCR results were generally consistent with the microarray data. We observed an inverse correlation between miR‐29 level and IFN‐γ mRNA expression in CD4+ T cells. GO and KEGG pathway analysis showed that the possible target genes of deregulated miRNAs were significantly enriched in mitogen‐activated protein kinase signalling pathway, focal adhesion and extracellular matrix receptor interaction, which might be involved in the transition from latent to active TB. In all, for the first time, our study revealed that some miRNAs in CD4+ T cells were altered in latent and active TB. Function and pathway analysis highlighted the possible involvement of miRNA‐deregulated mRNAs in TB. The study might help to improve understanding of the relationship between miRNAs in CD4+ T cells and TB, and laid an important foundation for further identification of the underlying mechanisms of latent TB infection and its reactivation.  相似文献   

10.
MicroRNAs (miRNAs) are an abundant class of small regulatory RNAs that regulate the stability and translation of cognate mRNAs. Although an increasing number of porcine miRNAs has recently been identified, the full repertoire of miRNAs in pig remains to be elucidated. To identify porcine miRNAs potentially involved in myogenesis and adipogenesis, we constructed small RNA cDNA libraries from skeletal muscle and adipose tissue and identified 89 distinct miRNAs that are conserved in pig, of which 15 were new. Expression analysis of all newly identified and selected known porcine miRNAs revealed that some miRNAs were enriched in a tissue-specific manner, whereas others were expressed ubiquitously in the porcine tissues examined. Our results expand the number of known porcine miRNAs and provide useful information for further investigating the biological functions of miRNAs associated with growth and development of skeletal muscle or adipose tissue in pig.  相似文献   

11.
MicroRNAs (miRNAs) play key roles in regulation of cellular processes in response to changes in environment. In this study, we examined alterations in miRNA profiles in peripheral blood from 25 male medical students two months and two days before the National Examination for Medical Practitioners. Blood obtained one month after the examination were used as baseline controls. Levels of seven miRNAs (miR-16, -20b, -26b, -29a, -126, -144 and -144*) were significantly elevated during the pre-examination period in association with significant down-regulation of their target mRNAs (WNT4, CCM2, MAK, and FGFR1 mRNAs) two days before the examination. State anxiety assessed two months before the examination was positively and negatively correlated with miR-16 and its target WNT4 mRNA levels, respectively. Fold changes in miR-16 levels from two days before to one month after the examination were inversely correlated with those in WNT4 mRNA levels over the same time points. We also confirmed the interaction between miR-16 and WNT4 3′UTR in HEK293T cells overexpressing FLAG-tagged WNT4 3′UTR and miR-16. Thus, a distinct group of miRNAs in periheral blood may participate in the integrated response to chronic academic stress in healthy young men.  相似文献   

12.
Sequence-non-specific effects of siRNAs that alter the expression of non-targeted genes have been reported, including competition of siRNAs with endogenous RISC components. However, the detailed mechanisms and subsequent effects of such competition are not well documented. Here we analyze the competition of miRNAs in mammalian cells with low concentrations of siRNAs, and found that: 1) transfection of different siRNAs in the low nanomolar range used to deplete target RNAs can reduce the levels of miRNAs in different cell types, 2) siRNA transfection results in rapid reduction of Ago2-associated miRNAs concurrent with accumulation of Ago2-bound siRNAs and a significant change in the expression levels of many miRNAs, 3) competition largely depends on Ago2 and not Dicer, 4) microarray analysis showed that the majority of highly expressed miRNAs are reduced, in a siRNA concentration dependent manner, and low abundant miRNAs may be unchanged or repressed and a few miRNAs appear to have increased levels, and 5) consistent with previous studies, the expression levels of mRNAs that are targeted by highly repressed miRNAs are preferentially increased. As a consequence of such competition, we observed that α-tubulin, a substrate of two up-regulated proteases, granzyme B and granzyme M, was rapidly degraded at the protein level upon siRNA transfection. Our results support a model in which transfection of siRNAs can change the levels of many miRNAs by competition for Ago2, leading to altered expression of many miRNA target genes, which can in turn affect downstream gene expression even at the protein level.  相似文献   

13.
14.
15.
Identification of 188 conserved maize microRNAs and their targets   总被引:2,自引:0,他引:2  
Zhang B  Pan X  Anderson TA 《FEBS letters》2006,580(15):3753-3762
  相似文献   

16.
Xie FL  Huang SQ  Guo K  Xiang AL  Zhu YY  Nie L  Yang ZM 《FEBS letters》2007,581(7):1464-1474
MicroRNAs (miRNAs) are a newly discovered class of non-protein-coding small RNAs with roughly 22 nucleotide-long. Increasing evidence has shown that miRNAs play multiple roles in biological processes, including development, cell proliferation and apoptosis and stress responses. In this research, several approaches were combined to make computational prediction of potential miRNAs and their targets in Brassica napus. We used previously known miRNAs from Arabidopsis, rice and other plant species against both expressed sequence tags (EST) and genomic survey sequence (GSS) databases to search for potential miRNAs in B. napus. A total of 21 potential miRNAs were detected following a range of strict filtering criteria. Using these potential miRNA sequences, we could further blast the mRNA database and found 67 potential targets in this species. According to the mRNA target information provided by NCBI (http://www.ncbi.nlm.nih.gov/), most of the target mRNAs appeared to be involved in plant growth, development and stress responses. To validate the prediction of miRNAs in B. napus, we performed a RT-PCR based assay of mature miRNA expression. Five miRNAs were identified in response to auxin, cadmium stress and phosphate starvation. So far, little is known about experimental or computational identification of miRNA in B. napus species. To improve efficiency for blast search, we developed an implementation (miRNAassist) that can identify homologs of miRNAs and their targets, with high sensitivity and specificity. The program is allowed to be run on Windows Operation System platform. miRNAassist is freely available if required.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号