首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A novel alpha-galactosidase gene (aga2) was cloned from Bifidobacterium breve 203. It contained an ORF of 2226-bp nucleotides encoding 741 amino acids with a calculated molecular mass of 81.5 kDa. The recombinant enzyme Aga2 was heterogeneously expressed, purified and characterized. Regarding substrate specificity for hydrolysis, Aga2 was highly active towards p-nitrophenyl-alpha-d-galactopyranoside (pNPG). The Km value for pNPG was estimated to be 0.27 mM and for melibiose it was estimated to be 4.3 mM. Aga2 was capable of catalyzing transglycosylation as well as hydrolysis. The enzyme synthesized a trisaccharide (Gal-alpha-1, 4-Gal-alpha-1, 6-Glc) using melibiose as a substrate. It was a new oligosaccharide produced by glycosidase and contained Gal-alpha-1,4 linkage, a novel galactosidic link formed by microbial alpha-galactosidase. In the presence of pNPG as a donor, Aga2 was able to catalyze glycosyl transfer to various acceptors including monosaccharides, disaccharides and sugar alcohols.  相似文献   

2.
The yeast Torulaspora delbrueckii IFO 1255 was selected as the strain fermenting melibiose from 35 strains of Torulaspora species. The strain IFO 1255 produced extracellular and cell-associated forms of α-galactosidase when grown on either melibiose or galactose as the sole carbon source. Most of the enzyme was located outside of the cell membrane: the periplasmic space, or cell walls, or both. α-Galactosidase was purified to homogeneity from the cell-free extract of the strain IFO 1255 by acid treatment and column chromatography on DEAE-Toyopearl 650M and Butyl-Toyopearl 650M. The molecular weight of the purified enzyme was estimated to be 88 000 by SDS-polyacrylamide gel electrophoresis and 530 000 by gel filtration. The enzyme contained 50% of its molecular weight as carbohydrate. Optimum pH and temperature were 4.5–5.5 and 55°C, respectively. The enzyme was inhibited strongly by Ag2+, Hg2+ and Cu2+ each at 1 mmol 1-1. The K m (μmol 1-1) for p -, o -, m -nitrophenyl α-D-galactopyranoside, melibiose, raffinose and stachyose were 2.8, 1.3, 2.8, 4.2, 170 and 230, respectively, and V max (μmol min-1 mg protein-1) for those substrates were 310, 140, 21, 22, 30 and 44, respectively. The properties of α-galactosidase from T. delbrueckii IFO 1255 were similar to those from the related species, Saccharomyces cerevisiae.  相似文献   

3.
Abstract— The presence of α-galactosidase activity has been demonstrated in rat brain. This enzyme, located mainly in the crude mitochondrial fraction, actively hydrolysed the substrates p -nitrophenyl-α-galactoside and melibiose, and also catalysed the hydrolysis of digalactosyl diglyceride of both animal and plant origin. The hydrolysis of p -nitrophenyl-α-galactoside, as catalysed by the α-galactosidase, occurred optimally at pH 4·9, showed an approximate K m of 1·0 × 10−3 m , and was markedly inhibited by melibiose, galactose and the mercuric ion.  相似文献   

4.
An acid α-galactosidase from the seeds of the jack fruit seed (Artocarpus integrifolia) has been purified to homogeneity by affinity chromatography on a matrix formed by cross-linking the soluble α-galactose-bearing guar seed galactomannan. The 35kDa enzyme was a homotetramer of 9.5kDa subunits. Its carbohydrate part (5.5%) was composed of galactose and arabinose. TheK m withp-nitrophenyl α-D-galactoside as substrate was 0.35 mM. TheK i values indicated inhibition by galactose, 1-O-methyl α-galactose and melibiose in the decreasing order. Among α-galactosides, the enzyme liberated galactose from melibiose, but not from raffinose or stachyose at its pH optimum (5.2). The guar seed galactomannan was however efficiently degalactosidated; limited enzyme treatment abolished the precipitability of the polysaccharide by the α-galactose-specific jack fruit seed lectin, and complete hydrolysis yielded insoluble polysaccharide. Though similar in sugar specificity and subunit assembly, α-galactosidase and the lectin coexisting in the jack fruit seed gave no indication of immunological identity.  相似文献   

5.
A novel α-galactosidase gene (aga-F75) from Gibberella sp. F75 was cloned and expressed in Escherichia coli. The gene codes for a protein of 744 amino acids with a 24-residue putative signal peptide and a calculated molecular mass of 82.94 kDa. The native structure of the recombinant Aga-F75 was estimated to be a trimer or tetramer. The deduced amino acid sequence showed highest identity (69%) with an α-galactosidase from Hypocrea jecorina (Trichoderma reesei), a member of the glycoside hydrolase family 36. Purified recombinant Aga-F75 was optimally active at 60°C and pH 4.0 and was stable at pH 3.0–12.0. The enzyme exhibited broad substrate specificity and substantial resistance to neutral and alkaline proteases. The enzyme K m values using pNPG, melibiose, stachyose, and raffinose as substrates were 1.06, 1.75, 54.26, and 8.23 mM, respectively. Compared with the commercial α-galactosidase (Aga-A) from Aspergillus niger var. AETL and a protease-resistant α-galactosidase (Aga-F78) from Rhizopus sp. F78, Aga-F75 released 1.4- and 4.9-fold more galactose from soybean meal alone, respectively, and 292.5- and 8.6-fold more galactose from soybean meal in the presence of trypsin, respectively. The pH and thermal stability and hydrolytic activity of Aga-F75 make it potentially useful in the food and feed industries.  相似文献   

6.
Certain factors affecting the production of cell-associated α-galactosidase by Bacillus sp. JF2 were investigated. The intention was to maximize α-galactosidase activity of potential commercial application, by consecutive optimization of growth media and conditions. The highest α-galactosidase activity was obtained when grown on melibiose, whereas sucrose inhibited the production of α-galactosidase. α-Galactosidase production was optimally active at pH 7·5 and 55°C. It was identified that a soy effluent stream could be used as the best carbon source for α-galactosidase by Bacillus sp. JF2.  相似文献   

7.
An acid α-glucosidase (EC 3.2.1.20) was purified to homogeneity from the culture medium of Tetrahymena thermophila CU 399. Its general molecular, catalytic and immunological properties were compared to those of the T. pyriformis W enzyme. The enzyme from T. thermophila was a 105-kD monomer and the N-terminus (25 amino acid residues) displayed some homology with that of T. pyriformis enzyme. The purified enzyme was most active at 56° C and showed resistance to thermal inactivation. The acid α-glucosidase appears to have α-1,6-glucosidase as well as α-1,4-glucosidase activity. The Km values determined with p-nitrophenyl-α-glucopyranoside, maltose, isomaltose and glycogen were 0.7 mM, 2.5 mM, 28.5 mM and 18.5 mg/ml, respectively. The enzyme was antigenically distinct from T. pyriformis acid α-glucosidase.  相似文献   

8.
Abstract Aspergillus nidulans released α-galactosidase into the culture medium during the exponential growth on either lactose or galactose as the only carbon source. This enzyme is a glycoprotein. Its treatment with endoglycosidases produces a reduction in its molecular mass but the resulting enzyme conserved some of their carbohydrate components in addition to its enzymatic activity. Mycelia of A. nidulans growing in the presence of tunicamycin synthesized an underglycosylated α-galactosidase which was not released into the culture media but remained bound to the cell-wall. Tunicamycin did not prevent the synthesis and secretion of α-galactosidase by protoplasts. N-linked oligosaccharide chains seem not to be essential for the synthesis and secretion of α-galactosidase of A. nidulans , but they could be necessary for proper targeting at the extracellular level.  相似文献   

9.
Abstract Most α-mannosidase activity (80%) in C. albicans was found in a soluble form. Addition of protease inhibitors to explore proteolytic release from a particulate cell component during enzyme preparation did not change this distribution. Molecular mass, calculated from gel filtration chromatography, was 417 kDa. Optimum pH was 6.0 with 50 mM Mes-Tris when p-nitrophenyl-α- d -mannopyranoside was used as substrate. Optimum temperature was 42°C with either 10 mM phosphate buffer (pH 6.8) or 50 mM Mes-Tris buffer (pH 6.0) and with 4-methylumbelliferyl-α- d -mannopyranoside as substrate. Apparent K m values for p-nitrophenyl-α- d -mannopyranoside and 4-methylumbelliferyl-α- d -mannopyranoside were 3.3 mM and 0.1 mM, respectively. 1 mM 1-deoxymannojirimycin and 0.3 mM swainsonine inhibited the hydrolysis of 4-methylumbelliferyl-α- d -mannopyranoside by 67% and 83%, respectively, whereas that of p-nitrophenyl-α- d -mannopyranoside was only slightly diminished (10–15%).  相似文献   

10.
Abstract Bacillus sp. ATCC 21591, an alkalophilic bacterium, produces 3 enzymes associated with degradation of starch-α-amylase, pullulanase and α-glucosidase. The latter reached a maximum after 24 h growth. Highest activities of α-glucosidase and pullulanase were obtained when the initial pH of the medium was 9.7 and although at pH 10.4 highest biomass was attained after 48 h no α-glucosidase was present. The pH optimum for activity with maltose as substrate was 7.0, which is surprisingly low for an alkalophilic organism. The enzyme was substrate specific for p -nitrophenyl- α -D-glucoside, maltose and maltotriose in that order. Forty eight times the activity was located in the cell-free supernatant, relative to that found intracellulary. Transferase activity was detected - the major end-product formed from maltose was a compound with an R f -value similar to isomaltose.  相似文献   

11.
Summary α-Galactosidase (Ec 3.2.1.22) was obtained from the yeast C. javanica grown on a mineral culture medium supplemented with melibiose plus raffinose. The cell-bound α-galactosidase and the preparations from the culture filtrate and from the cells exhibited maximum activity at pH 4 and 70°C. After 15 min at 70°C, 70% of the α-galactosidase activity was recovered, and after 15 min at 80°C complete inactivation was observed. The Michaelis constant (Km) of α-galactosidase on pNPG and on melibiose was about 11 mM. Galactose as a reaction product had no effect on α-galactosidase activity of the preparation from the cells, whereas glucose (2 and 10 mM) increased the activity. On the basis of polyacrylamide gel electrophoresis, the preparation from the cell extract, obtained after ultrafiltration and ethanol precipitation, showed only an active band which stained with Coomassie-blue but not with Schiff-periodate. The α-galactosidase from C. javanica is α-galactosidase A, it lacks invertase and it reduces group B specificity of erythrocytes.  相似文献   

12.
Homomeric α7 nicotinic acetylcholine receptors are a well-established, pharmacologically distinct subtype. The more recently identified α9 subunit can also form functional homopentamers as well as α9α10 heteropentamers. Current fluorescent probes for α7 nicotinic ACh receptors are derived from α-bungarotoxin (α-BgTx). However, α-BgTx also binds to α9* and α1* receptors which are coexpressed with α7 in multiple tissues. We used an analog of α-conotoxin ArIB to develop a highly selective fluorescent probe for α7 receptors. This fluorescent α-conotoxin, Cy3-ArIB[V11L;V16A], blocked ACh-evoked α7 currents in Xenopus laevis oocytes with an IC50 value of 2.0 nM. Observed rates of blockade were minute-scale with recovery from blockade even slower. Unlike FITC-conjugated α-BgTx, Cy3-ArIB[V11L;V16A] did not block α9α10 or α1β1δε receptors. In competition binding assays, Cy3-ArIB[V11L;V16A] potently displaced [125I]-α-BgTx binding to mouse hippocampal membranes with a K i value of 21 nM. Application of Cy3-ArIB[V11L;V16A] resulted in specific punctate labeling of KXα7R1 cells but not KXα3β2R4, KXα3β4R2, or KXα4β2R2 cells. This labeling could be abolished by pre-treatment with α-cobratoxin. Thus, Cy3-ArIB[V11L;V16A] is a novel and selective fluorescent probe for α7 receptors.  相似文献   

13.
Carrot ( Daucus carota L. cv. Kintoki) cell cultures secrete an α-L-arabinofuranosidase (α-L-AFase, EC 3.2.1.55) into their culture medium during growth. The extracellular α-L-AFase (α-L-AFase-II) was purified to electrophoretic homogeneity from the concentrated medium using ammonium sulfate precipitation, chromatography on DEAE-Sepharose CL-6B, CM-Sepharose CL-6B, Sephacryl S-200HR and Concanavalin A-Sepharose, and preparative PAGE. The molecular mass of the purified enzyme was estimated to be 84 kDa by Sephacryl S-200HR gel-permeation, and 80 kDa by SDS-PAGE under denaturing conditions. The enzyme contained carbohydrate and protein in a ratio of 1:5 (w/w), and was analyzed for amino acid composition and the sequence of the first 21 amino acids of the N-terminus. The isoelectric point was pH 5.6, the pH optimum 3.8, and the temperature optimum 55°C. The activity was inhibited by Zn2+, Ag2+, Cu2+, Hg2+ and p -chloromercuribenzoate. The Km and Vmax values for p -nitrophenyl-α-L-arabinofuranoside were 0.22 m M and 0.11 mmol (mg protein)−1 h−1, respectively. The enzyme acted on beet arabinan in an exo-fashion, and was capable of hydrolysing arabinose-rich polymers purified from pectic polysaccha-rides of carrot cell cultures. However, even after an exhaustive reaction, the enzyme had little or no effect on cell walls from carrot cell cultures.  相似文献   

14.
The production of α- l -rhamnosidase by Aspergillus nidulans has been investigated. In the presence of rhamnose as sole carbon source, this fungus produces an α- l -rhamnosidase of molecular weight 90 kDa. Production of this enzyme is under carbon catabolite repression, apparently by a CreA-independent system. At acidic ambient pH there is an increase in the synthesis of the enzyme which is not related to PacC. Using ρ-nitrophenyl-α- l -rhamnopyranoside as substrate, the enzyme activity in culture filtrates shows pH and temperature optima of 4·5–8 and 40–50 °C, respectively. At the concentrations found in must or wine, enzyme activity was only slightly affected by glucose and SO2 and partly inhibited by ethanol, indicating a potential for use in wine aroma release.  相似文献   

15.
α-Galactosidase production by a newly isolated actinomycete Streptomyces griseoloalbus under submerged fermentation was investigated. The influence of initial pH of medium, incubation temperature, inoculum age and inoculum size on α-galactosidase formation was studied. Various carbon sources were supplemented in the medium to study their effect on enzyme production. The influence of the concentration of locust bean gum on enzyme production also was optimized. Optimization of process parameters resulted in a highest α-galactosidase activity of 20.4 U/ml. The highest α-galactosidase activity was obtained when the fermentation medium with initial pH 6.0 and containing 1% locust bean gum as growth substrate was inoculated with 10% (v/v) of 72 h grown inoculum and incubated at 30°C. The hydrolysis of flatulence-causing oligosaccharides in soymilk by the enzyme was also investigated. Thin layer chromatographic analysis of enzyme-treated soymilk samples showed the complete hydrolysis of soy oligosaccharides liberating galactose, the final product.  相似文献   

16.
Two protein fractions with activity as α-galactosidase (EC 3.2.1.22) and α-arabinosidase (EC 3.2.1.55), respectively, were identified in the proteins of cell wall of Cicer arietinum L. cv. Castellana extracted with 3 M LiCl. These fractions were partially purified by gel filtration chromatography (Bio Gel P-150), increasing the specific arabinosidase activity 57-fold and the α-galactosidase activity 6-fold. Other protein fractions with glucosidase (EC 3.2.1.21) and glucanase (EC 3.2.1.6) activity also appeared. According to earlier authors, α-arabinosidases and α-galactosidases are related to alterations in linkages occurring in cell walls, since the enzymes are able to hydrolyze isolated wall polymers. However, our preparations hydrolyze intact cell walls only to a very limited extent, such that their participation in the autolytic processes of cell walls can be ruled out.  相似文献   

17.
When grown with maltose or starch as carbon source at 37°C, Bacillus licheniformis synthesized two α-glucosidases which could be resolved by polyacrylamide gel electrophoresis. One of these enzymes preferentially hydrolysed p -nitrophenyl-α-D-glucoside ( p NPG) and the other was inactive on p NPG but hydrolysed maltose (maltase). Only the maltase could be detected in induced cells grown at 50°C.  相似文献   

18.
19.
Abstract The effects of some physico-chemical parameters on production of extracellular α-L-arabinofuranosidase by Aspergillus nidulans were examined. Highest levels of α-L-arabinofuranosidase were generated with cultures grown on 1% (w/v) purified beet pulp arabinan at 30°C and at an initial pH of 7.0. The enzyme was shown to be very sensitive to the action of proteases. Zymogram overlay of a protein profile obtained by SDS-PAGE revealed the occurrence of a band ( M r 36 000) exhibiting α-L-arabinofuranosidase activity. The isoelectric pH of the enzyme lay near 4.3. Temperature and pH optima for the activity of crude α-L-arabinofuranosidase preparations were 55°C and 5.5, respectively. Enzyme activity was greatly reduced by thiol reagents such as Hg2+ and p -hydroxymercuribenzoate and showed a K m value of 2.7 mM on p -nitrophenyl α-L-arabinofuranoside as substrate.  相似文献   

20.
The alpha-aminoadipate-semialdehyde dehydrogenase (EC 1.2.1.31) of Trichosporon adeninovorans, an enzyme of lysine biosynthesis, was partially purified, some properties of the enzyme were studied and a novel regulatory pattern was found. The Km values of the enzyme were estimated to be 0.78 mM for alpha-aminoadipate, 1.0 mM for ATP, 0.23 mM for NADPH and 0.77 mM for MgCl2. It is demonstrated that the enzyme can be regulated by lysine and lysine analogues. L-Lysine (Ki of 0.09 mM), S-(beta-aminoethyl)-L-cysteine (Ki of 0.007 mM) and delta-hydroxylysine (Ki of 1.65 mM) inhibited the enzyme activity. The inhibition was competitive with respect to alpha-aminoadipate and non-competitive with respect to both ATP and NADPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号