首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Iono- and osmoregulation by the blood-feeding hemipteran Rhodnius prolixus involves co-ordinated actions of the upper and lower Malpighian tubules. The upper tubule secretes ions (Na(+), K(+), Cl(-)) and water, whereas the lower tubule reabsorbs K(+) and Cl(-) but not water. The extent of KCl reabsorption by the lower tubule in vitro was monitored by ion-selective microelectrode measurement of Cl(-) and/or K(+) concentration in droplets of fluid secreted by Malpighian tubules isolated under oil. An earlier study proposed that K(+) reabsorption involves an omeprazole-sensitive apical K(+)/H(+) ATPase and Ba(2+)-sensitive basolateral K(+) channels. This paper examines the effects acetazolamide and of compounds that inhibit chloride channels, Cl(-)/HCO(3)(-) exchangers and Na(+)/K(+)/2Cl(-) or K(+)/Cl(-) co-transporters. The results suggest that Cl(-) reabsorption is inhibited by acetazolamide and by Cl(-) channel blockers, including diphenylamine-2-carboxylate(DPC) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), but not by compounds that block Na(+)/K(+)/Cl(-) and K(+)/Cl(-) co-transporters. Measurements of transepithelial potential and basolateral membrane potential during changes in bathing saline chloride concentration indicate the presence of DPC- and NPPB-sensitive chloride channels in the basolateral membrane. A working hypothesis of ion movements during KCl reabsorption proposes that Cl(-) moves from lumen to cell through a stilbene-insensitive Cl(-)/HCO(3)(-) exchanger and then exits the cell through basolateral Cl(-) channels.  相似文献   

2.
Insect renal organs typically exhibit high rates of transport of inorganic and organic anions, and therefore provide useful models for the study of epithelial anion transport and its control. Isolated Malpighian tubules of some species secrete a volume of iso-osmotic fluid equal to their own volume in 10-15 s, which means that cellular Cl(-) content is exchanged every 3-5 s. Anion transport can also be achieved against extreme thermodynamic gradients. The concentration of K(+) and Cl(-) in the lumen of the Malpighian tubules of some desert beetles approaches or exceeds saturation. A basolateral Na(+):K(+):2Cl(-) cotransporter plays an important role in vectorial ion transport in Malpighian tubules of many species, but there is also evidence for coupling of Cl(-) transport to the movement of a single cationic species (Na(+) or K(+)). Although an apical vacuolar H(+)-ATPase plays a primary role in energizing transepithelial secretion of chloride via channels or cotransporters in the secretory segment of the Malpighian tubule, several different ATPases have been implicated in reabsorption of Cl(-) by the lower Malpighian tubule or hindgut. Chloride transport is known to be controlled by several neuropeptides, amines and intracellular second messengers. Insect renal epithelia are also important in excretion of potentially toxic organic anions, and the transporters involved may play a role in resistance to insecticides of natural or anthropogenic origin.  相似文献   

3.
The influence of copper on osmoregulation in the freshwater amphipod Gammarus pulex was determined from the analysis of water permeability, haemolymph sodium concentration, sodium influx and gill Na(+)/K(+) ATPase and Mg(2+) ATPase activity. Exposure to nominal copper concentrations of 100 microg l(-1) or greater caused a significant reduction in both haemolymph sodium concentration and sodium influx within 4 h. Measurements of water permeability, expressed as the half-time of exchange of body water (t(1/2)), excluded structural gill damage as the cause of this fall in haemolymph sodium. Copper at 10 microg l(-1) or above in the assay solution significantly reduced gill Na(+)/K(+) ATPase activity. In contrast gill Mg(2+) ATPase activity was markedly less affected by copper. These differences in enzyme sensitivity were considered with respect to the potential mechanisms of copper toxicity.  相似文献   

4.
不同盐度条件下中华绒螯蟹亲蟹行为及血淋巴生理变化   总被引:5,自引:0,他引:5  
设定淡水对照组、盐度18适应组、盐度30骤变组(18→30)和盐度0骤变组(18→0),采用视频记录分析法研究了不同盐度条件下中华绒螯蟹雌性亲蟹的8项行为学指标变化,并测定了血淋巴渗透压及离子、血蓝蛋白含量。结果表明:中华绒螯蟹亲蟹封闭反应行为仅发生于盐度组(盐度18组和盐度30骤变组),且盐度30骤变组封闭反应时间显著高于盐度18组(P<0.05);腹部开合行为仅见于盐度0骤变组;盐度组第一触角回缩时间显著高于对照组(P<0.05);其他5项行为学指标活动频率均于盐度0骤变组最高。各实验组亲蟹血淋巴渗透压及离子浓度均高于外界实验水体,且均随盐度升高而增大。血蓝蛋白含量随盐度的降低而升高,盐度0骤变组血蓝蛋白含量显著高于盐度30骤变组(P<0.05)。分析认为,中华绒螯蟹亲蟹在0~30盐度范围内进行高渗透压调节,腹部开合行为是其在低盐度环境下暴露尾肠吸收水中离子的一种行为策略,封闭反应有助于机体减少高盐度坏境下水的吸收及扩散失盐。  相似文献   

5.
We describe the gut physiology of the Lake Magadi tilapia (Alcolapia grahami), specifically those aspects associated with feeding and drinking while living in water of unusually high carbonate alkalinity (titratable base=245 mequiv l(-1)) and pH (9.85). Drinking of this highly alkaline lake water occurs at rates comparable to or higher than those seen in marine teleosts. Eating and drinking take place throughout the day, although drinking predominates during hours of darkness. The intestine directly intersects the esophagus at the anterior end of the stomach forming a 'T', and the pyloric sphincter, which comprises both smooth and striated muscle, is open when the stomach is empty and closed when the stomach is full. This unique configuration (a functional trifurcation) allows imbibed alkaline water to bypass the empty stomach, thereby avoiding a reactive mixing with acidic gastric fluids, and minimizes interference with a full stomach. No titratable base was present in the stomach, where the mean pH was 3.55, but the intestine was progressively more alkaline (foregut 6.96, midgut 7.74, hindgut 8.12, rectum 8.42); base levels in the intestinal fluid were comparable to those in lake water. The gut was highly efficient at absorbing water (76.6%), which accompanied the absorption of Na(+) (78.5%), titratable base (80.8%), and Cl(-) (71.8%). The majority of Na(+), base and water absorption occurred in the foregut by an apparent Na(+) plus base co-transport system. Overall, more than 70% of the intestinal flux occurred via Na(+) plus base co-transport, and less than 30% by Na(+) plus Cl(-) co-transport, a very different situation from the processes in the intestine of a typical marine teleost.  相似文献   

6.
Our purpose was to study the interaction between Na(+) content and fluid volume on rehydration (RH) and restoration of fluid spaces and cardiovascular (CV) function. Ten men completed four trials in which they exercised in a 35 degrees C environment until dehydrated by 2. 9% body mass, were rehydrated for 180 min, and exercised for an additional 20 min. Four RH regimens were tested: low volume (100% fluid replacement)-low (25 mM) Na(+) (LL), low volume-high (50 mM) Na(+) (LH), high volume (150% fluid replacement)-low Na(+) (HL), and high volume-high Na(+) (HH). Blood and urine samples were collected and body mass was measured before and after exercise and every hour during RH. Before and after the dehydration exercise and during the 20 min of exercise after RH, cardiac output was measured. Fluid compartment (intracellular and extracellular) restoration and percent change in plasma volume were calculated using the Cl(-) and hematocrit/Hb methods, respectively. RH was greater (P < 0.05) in HL and HH (102.0 +/- 15.2 and 103.7 +/- 14.7%, respectively) than in LL and LH (70.7 +/- 10.5 and 75.9 +/- 6.3%, respectively). Intracellular RH was greater in HL (1.12 +/- 0.4 liters) than in all other conditions (0.83 +/- 0.3, 0.69 +/- 0.2, and 0.73 +/- 0.3 liter for LL, LH, and HH, respectively), whereas extracellular RH (including plasma volume) was greater in HL and HH (1.35 +/- 0.8 and 1.63 +/- 0.4 liters, respectively) than in LL and LH (0.83 +/- 0.3 and 1.05 +/- 0.4 liters, respectively). CV function (based on stroke volume, heart rate, and cardiac output) was restored equally in all conditions. These data indicate that greater RH can be achieved through larger volumes of fluid and is not affected by Na(+) content within the range tested. Higher Na(+) content favors extracellular fluid filling, whereas intracellular fluid benefits from higher volumes of fluid with lower Na(+). Alterations in Na(+) and/or volume within the range tested do not affect the degree of restoration of CV function.  相似文献   

7.
The role of Na(+) and Cl(-) in fluid reabsorption by the efferent ducts was examined by perfusing individual ducts in vivo with preparations of 160 mM NaCl in which the ions were replaced, together or individually, with organic solutes while maintaining the osmolality at 300 mmol/kg. Progressively replacing NaCl with mannitol reduced net reabsorption of water and the ions in a concentration-dependent manner, and caused net movement into the lumen at concentrations of NaCl less than 80 mM. The net rates of flux were lower for Na(+) than for Cl(-). In collectates, [Na(+)] was greater than [Cl(-)], indicating that Cl(-) transport is probably linked with another anion. Replacing either Na(+) or Cl(-) in perfusates (with choline and isethionate, respectively) while maintaining the other inorganic ion at 160 mM also reduced net rates of reabsorption in a concentration-dependent manner to zero when either ion was completely replaced. There were no significant differences in the osmolality of perfusate and collectate, and collectates contained a mean of 3.4 mM K(+), indicating a backflux of K(+) into the lumen. It is concluded that fluid reabsorption from the efferent ducts is dependent on the transport of both Na(+) and Cl(-) from the lumen (from a luminal concentration of at least 70-80 mM), and that Cl(-) transport is dependent on another anion. The epithelium is permeable to K(+) and has a higher permeability to a range of organic solutes (mannitol, choline, and isethionate) than epithelium in the proximal kidney tubules.  相似文献   

8.
The role of the gastrointestinal tract in maintaining ionic homeostasis during digestion, as well as the relative contribution of the diet for providing electrolytes, has been generally overlooked in many aquatic species. An experimental diet that contained an inert reference marker (lead-glass beads) was used to quantify the net transport of Na(+), K(+), and Cl(-) during the digestion and absorption of a single meal (3% ration) by freshwater rainbow trout (Oncorhynchus mykiss). Secretion of Cl(-) into the stomach peaked at 8 and 12 h following feeding at a rate of 1.1 mmol.kg(-1).h(-1), corresponding to a theoretical pH of 0.6 in the secreted fluid (i.e., 240 mmol/l HCl). The majority ( approximately 90%) of dietary Na(+) and K(+) was absorbed in the stomach, whereas subsequent large fluxes of Na(+) and Cl(-) into the anterior intestine corresponded to a large flux of water previously observed. The estimated concentration of Na(+) in fluids secreted into the anterior intestine was approximately 155 mmol/l, equivalent to reported hepatic bile values, whereas the estimated concentration of Cl(-) ( approximately 285 mmol/l) suggested seepage of HCl acid from the stomach in advance of the chyme front. Net absorption of K(+) in the stomach occurred following the cessation of Cl(-) secretion, providing indirect evidence of K(+) involvement with HCl acid production. Overall, 80-90% of the K(+) and Cl(-) contents of the meal were absorbed on a net basis, whereas net Na(+) absorption was negligible. Chyme-to-plasma ion concentration gradients were often opposed to the direction of ion transport, especially for Na(+) and Cl(-).  相似文献   

9.
Although the Na(+)/K(+) pump is one of the key mechanisms responsible for maintaining cell volume, we have observed experimentally that cell volume remained almost constant during 90 min exposure of guinea pig ventricular myocytes to ouabain. Simulation of this finding using a comprehensive cardiac cell model (Kyoto model incorporating Cl(-) and water fluxes) predicted roles for the plasma membrane Ca(2+)-ATPase (PMCA) and Na(+)/Ca(2+) exchanger, in addition to low membrane permeabilities for Na(+) and Cl(-), in maintaining cell volume. PMCA might help maintain the [Ca(2+)] gradient across the membrane though compromised, and thereby promote reverse Na(+)/Ca(2+) exchange stimulated by the increased [Na(+)](i) as well as the membrane depolarization. Na(+) extrusion via Na(+)/Ca(2+) exchange delayed cell swelling during Na(+)/K(+) pump block. Supporting these model predictions, we observed ventricular cell swelling after blocking Na(+)/Ca(2+) exchange with KB-R7943 or SEA0400 in the presence of ouabain. When Cl(-) conductance via the cystic fibrosis transmembrane conductance regulator (CFTR) was activated with isoproterenol during the ouabain treatment, cells showed an initial shrinkage to 94.2 +/- 0.5%, followed by a marked swelling 52.0 +/- 4.9 min after drug application. Concomitantly with the onset of swelling, a rapid jump of membrane potential was observed. These experimental observations could be reproduced well by the model simulations. Namely, the Cl(-) efflux via CFTR accompanied by a concomitant cation efflux caused the initial volume decrease. Then, the gradual membrane depolarization induced by the Na(+)/K(+) pump block activated the window current of the L-type Ca(2+) current, which increased [Ca(2+)](i). Finally, the activation of Ca(2+)-dependent cation conductance induced the jump of membrane potential, and the rapid accumulation of intracellular Na(+) accompanied by the Cl(-) influx via CFTR, resulting in the cell swelling. The pivotal role of L-type Ca(2+) channels predicted in the simulation was demonstrated in experiments, where blocking Ca(2+) channels resulted in a much delayed cell swelling.  相似文献   

10.
A hallmark of high-grade cancers is the ability of malignant cells to invade unaffected tissue and spread disease. This is particularly apparent in gliomas, the most common and lethal type of primary brain cancer affecting adults. Migrating cells encounter restricted spaces and appear able to adjust their shape to accommodate to narrow extracellular spaces. A growing body of work suggests that cell migration/invasion is facilitated by ion channels and transporters. The emerging concept is that K(+) and Cl(-) function as osmotically active ions, which cross the plasma membrane in concert with obligated water thereby adjusting a cell's shape and volume. In glioma cells Na(+)-K(+)-Cl(-) cotransporters (NKCC1) actively accumulate K(+) and Cl(-), establishing a gradient for KCl efflux. Ca(2+)-activated K(+) channels and voltage-gated Cl(-) channels are largely responsible for effluxing KCl promoting hydrodynamic volume changes. In other cancers, different K(+) or even Na(+) channels may function in concert with a variety of Cl(-) channels to support similar volume changes. Channels involved in migration are frequently regulated by Ca(2+) signaling, most likely coupling extracellular stimuli to cell migration. Importantly, the inhibition of ion channels and transporters appears to be clinically relevant for the treatment of cancer. Recent preclinical data indicates that inhibition of NKCC1 with an FDA-approved drug decreases neoplastic migration. Additionally, ongoing clinical trials demonstrate that an inhibitor of chloride channels may be a therapy for the treatment of gliomas. Data reviewed here strongly indicate that ion channels are a promising target for the development of novel therapeutics to combat cancer.  相似文献   

11.
The intestinal epithelium of the euryhaline teleost fish, Anguilla anguilla, absorbs Cl(-) transepithelially. This gives rise to a negative transepithelial potential at the basolateral side of the epithelium and to a measured short circuit current. Cl(-) absorption occurs via bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransport, localized on the luminal membrane. The cotransport operates in parallel with a luminal K(+) conductance that recycles the ion into the lumen. Cl(-) leaves the cell across the basolateral membrane by way of Cl(-) conductance and presumably via a KCl cotransport. The driving force for this process is provided by the electrochemical sodium gradient across the plasma membrane, generated and maintained by the basolateral Na(+)-K(+)-ATPase. The resulting NaCl absorption process is active and enables marine fish to take up water, thereby compensating for water that was lost passively from the body. Fresh water acclimatized eel also absorb Cl(-) actively, although in smaller quantities, utilizing the same ion transport mechanisms as marine eels. This mechanism is basically the same as the model proposed for the thick ascending limb (cTAL). Cl(-) absorption is regulated by a number of cellular factors, such as HCO(3) (-), pH, Ca(2+), cyclic nucleotides, and cytoskeletal elements. It is sensitive to osmotic stress, and therefore is a good physiological model to study ion transport mechanisms that are activated when osmotic stress induces cell volume regulation. The activation of these various ion transport pathways is dependent on cellular transduction mechanisms in which phosphorylation events (mainly by PKC and MLCK for the hypertonic response) and cytoskeletal elements, either microfilaments or microtubules, seem to play key roles.  相似文献   

12.
Rats drank rapidly when 0.3 M NaCl was the only drinking fluid available after overnight water deprivation, consuming approximately 200 ml/24 h. Although such large intakes of this hypertonic solution initially elevated plasma osmolality, excretion of comparable volumes of urine more concentrated than 300 meq Na(+)/l ultimately appears to restore plasma osmolality to normal levels. Rats drank approximately 100 ml of 0.5 M NaCl after overnight water deprivation, but urine Na(+) concentration (U(Na)) did not increase sufficiently to achieve osmoregulation. When an injected salt load exacerbated the initial dehydration caused by water deprivation, rats increased U(Na) to void the injected load and did not significantly alter 24-h intake of 0.3 or 0.5 M NaCl. Rats with lesions of area postrema had much higher saline intakes and lower U(Na) than did intact control rats; nonetheless, they appeared to osmoregulate well while drinking 0.3 M NaCl but not while drinking 0.5 M NaCl. Detailed analyses of drinking behavior by intact rats suggest that individual bouts were terminated by some rapid postabsorptive consequence of the ingested NaCl load that inhibited further NaCl intake, not by a fixed intake volume or number of licks that temporarily satiated thirst.  相似文献   

13.
The freshwater bivalve, Corbicula fluminea, when submitted to hyperosmotic solutions, behaves as a hyperosmoconformer; we have observed an increase in osmolality and ions in its extracellular fluid. Osmotic and ionic changes in its watery environment represent a challenge for the tissues of this mollusk. Thus we evaluated, in vitro, muscle tissue volume variations (based on wet weight change) under anisosmotic salines, as well the possible regulatory mechanisms involved in the processes. This tissue did not exhibit complete volume regulation under anisosmotic saline solutions, but showed less variation than would be predicted by Van't Hoff's law, and tissue volume remained essentially stable throughout 90 min of exposure. To minimize tissue swelling in hyposmotic situations, C. fluminea muscle mobilizes organic osmolytes (ninhydrin positive substances) and inorganic ions (K(+) and Cl(-)). While under hyperosmotic stimulus, apparently only inorganic osmolytes (Na(+) and Cl(-)) are mobilized by the tissue. Our results indicate ionic accumulation by the Na(+)-K(+)-2Cl(-) cotransporter and the Na(+)/H(+) coupled to Cl(-)/HCO(3)(-) exchangers. Exposure of the muscle tissue to Ca(2+)-free anisosmotic saline did not result in a detectable inhibition of the mechanisms described above. The Ca(2+) gradient that derives from the absence of this ion, even apparently enhances the regulatory mechanisms. These responses of this freshwater mollusk in hyperosmotic solutions, and the muscle tissue under anisosmotic (hypo and hyperosmotic) saline solutions, have not been previously characterized in the manner and approach as reported here. Specifically, we analyze both organic and inorganic osmolytes mobilized under hyposmotic stress, and can infer the participation of Na(+) and Cl(-) pathways stimulated by hyperosmotic stress. From the perspective gained in this study, tissue volume responses may be used as models for toxicological investigations.  相似文献   

14.
Three different methods have been used to improve a model for fluid secretion in Upper Malpighian Tubules (UMT) of the blood sucking insect Rhodnius prolixus. (I) In the first, UMT double perfusions in 5th instar Rhodnius were used to measure their fluid secretion rate. They were stimulated to secrete with 5-HT. Double perfusions allowed access separately to the basolateral and the apical cell membranes with pharmacological agents known to block different ion transport functions, namely ATPases, cotransporters and/or countertransporters and ion and water channels: ouabain, bafilomycin A1, furosemide, bumetanide, SITS, acetazolamide, amiloride, DPC, BaCl(2), pCMBS and DTT. The basic assumption is that changes in water movement reflect changes in ion transport mechanisms. (II) Intracellular Na(+) concentrations were measured with a fluorometric method in dissected R. prolixus UMT, under several experimental conditions. (III) ATPase activities were measured in R. prolixus UMT. A tentative model for the function of the UMT cell is presented. We find that (a) at the basolateral cell membrane, fundamental is a Na(+)-K(+)-2Cl(-) cotransporter; of intermediate importance are the Na(+)-K(+)-ATPase and a ouabain-insensitive Na(+)-ATPase, ion channels and Rp-MIP water channels. (b) At the apical cell membrane, most important are a V-H(+)-ATPase; and a K(+) and/or Na(+)-H(+) exchanger.  相似文献   

15.
The significance of diuresis in the water and ion balance of newly emerged Pieris was examined by comparing the composition of haemolymph and urine during diuresis. The high potassium content of the urine results in a marked increase in the Na/K ratio of the haemolymph. The haemolymph osmolarity is well regulated, in spite of the very hypo-osmotic urine. By means of an isolated preparation of the ileum, it was shown that rapid resorption of potassium ions by this part of the hindgut is responsible for the low osmolarity of the urine.  相似文献   

16.
Molecular dynamics simulations are performed on two hydrated dipalmitoylphosphatidylcholine bilayer systems: one with pure water and one with added NaCl. Due to the rugged nature of the membrane/electrolyte interface, ion binding to the membrane surface is characterized by the loss of ion hydration. Using this structural characterization, binding of Na(+) and Cl(-) ions to the membrane is observed, although the binding of Cl(-) is seen to be slightly weaker than that of Na(+). Dehydration is seen to occur to a different extent for each type of ion. In addition, the excess binding of Na(+) gives rise to a net positive surface charge density just outside the bilayer. The positive density produces a positive electrostatic potential in this region, whereas the system without salt shows an electrostatic potential of zero.  相似文献   

17.
IL-1beta is suspected to be involved in the diarrhea that always accompanies inflammatory bowel disease. This work was aimed at studying the in vivo effect of IL-1beta on the net absorption of fluid, Na(+) and Cl(-) from the rat colon, and at delineating its mechanism of action. Rats were injected i.p. with IL-1beta (1 mug/kg body weight) and the colon was perfused, four hours later, with Krebs-Ringer buffer. Net fluid absorption was calculated as the difference between the total volume of the buffer infused and collected per cm(2) of perfused intestine. Chloride in both buffers was determined by titration according to Mohr's method and net Cl- absorption was calculated in the same way. IL-1beta reduced the net absorption of water and chloride. The cytokine also reduced the percentage recovery of the Na(+)-K(+) ATPase activity in crude homogenates of membranes from surface and crypt colonic cells as revealed by the determination of inorganic phosphate released. In addition IL-1beta decreased the protein expression of the Na(+)-K(+) pump and increased that of the NaKCl(2) symporter. It is concluded that IL-1beta has a dual effect: it inhibits the Na(+)-K(+) pump and consequently NaCl absorption, and up-regulates the NaKCl(2) transporter and increases Cl(-) secretion. The ultimate effect of the two processes is a net decrease in Na(+)+ and Cl(-) absorption and an increase in water retention in the colon leading to the observed diarrhea in inflammatory bowel disease.  相似文献   

18.
Although urea production and metabolism in lungfish have been thoroughly studied, we have little knowledge of how internal osmotic and electrolyte balance are controlled during estivation or in water. We tested the hypothesis that, compared with the body surface of teleosts, the slender African lungfish (Protopterus dolloi) body surface was relatively impermeable to water, Na(+), and Cl(-) due to its greatly reduced gills. Accordingly, we measured the tritiated water ((3)H-H(2)O) flux in P. dolloi in water and during air exposure. In water, (3)H-H(2)O efflux was comparable with the lowest measurements reported in freshwater teleosts, with a rate constant (K) of 17.6% body water h(-1). Unidirectional ion fluxes, measured using (22)Na(+) and (36)Cl(-), indicated that Na(+) and Cl(-) influx was more than 90% lower than values reported in most freshwater teleosts. During air exposure, a cocoon formed within 1 wk that completely covered the dorsolateral body surface. However, there were no disturbances to blood osmotic or ion (Na(+), Cl(-)) balance, despite seven- to eightfold increases in plasma urea after 20 wk. Up to 13-fold increases in muscle urea (on a dry-weight basis) were the likely explanation for the 56% increase in muscle water content observed after 20 wk of air exposure. The possibility that muscle acted as a "water reservoir" during air exposure was supported by the 20% decline in body mass observed during subsequent reimmersion in water. This decline in body mass was equivalent to 28 mL water in a 100-g animal and was very close to the calculated net water gain (approximately 32 mL) observed during the 20-wk period of air exposure. Tritiated water and unidirectional ion fluxes on air-exposed lungfish revealed that the majority of water and ion exchange was via the ventral body surface at rates that were initially similar to aquatic rates. The (3)H-H(2)O flux declined over time but increased upon reimmersion. We conclude that the slender lungfish body surface, including the gills, has relatively low permeability to water and ions but that the ventral surface is an important site of osmoregulation and ionoregulation. We further propose that an amphibian-like combination of ventral skin water and ion permeability, plus internal urea accumulation during air exposure, allows P. dolloi to extract water from its surroundings and to store water in the muscle when the water supply becomes limited.  相似文献   

19.
This study is the first step in characterizing ion uptake mechanisms of mosquito larvae from the Amazon region of Brazil. Hemolymph NaCl levels and rates of unidirectional Na(+) and Cl(-) uptake were measured in larvae of Aedes aegypti and Culex quinquefasciatus in a series of environmental manipulations that are known to challenge ion regulation in other aquatic animals. Despite being reared for numerous generations in dilute media (20 micromol L(-1) NaCl), both species were able to maintain high hemolymph NaCl concentrations, a departure from previous studies. Exposure to distilled water or high-NaCl media did not affect hemolymph ion levels, but pH 3 caused significant decreases in hemolymph Na(+) and Cl(-) levels in both species. Exposure to water from Rio Negro (pH 5.5), an organically rich but ion-poor body of water, did not disturb hemolymph Na(+) and Cl(-) levels or the uptake of these ions. Acute exposure to control media or Rio Negro water titrated to pH 3.5 caused inhibition of Na(+) uptake and stimulation of Cl(-) uptake in C. quinquefasciatus, but A. aegypti larvae experienced only a significant reduction of Na(+) uptake in Rio Negro/pH 3.5 treatment. The stimulation of Cl(-) uptake at low pH has been documented only in aquatic insects and differs from all other invertebrate and vertebrate species. A similar pattern of Na(+) uptake inhibition and Cl(-) uptake stimulation was observed in A. aegypti larvae exposed to bafilomycin A(1), a blocker of V-type H(+) ATPase. Culex quinquefasciatus larvae were unaffected by this drug. Both Na(+) and Cl(-) uptake were reduced when C. quinquefasciatus larvae were exposed to acetazolamide, indicating that H(+) and HCO(3)(-), derived from hydration of CO(2), are involved with Na(+) and Cl(-) uptake. Kinetic analysis of Na(+) and Cl(-) uptake in C. quinquefasciatus, A. aegypti, and Anopheles nuneztovari larvae indicate that these Amazonian species share similar high-capacity and high-affinity mechanisms. Comparison of the Amazonian C. quinquefasciatus with a Californian population provided evidence of both phenotypic plasticity and population disparity in Na(+) and Cl(-) uptake, respectively. When the California population of C. quinquefasciatus was reared in a medium similar to that of the Amazonian group (60 micromol L(-1) NaCl) instead of 4,000 micromol L(-1) NaCl, larvae increased both Na(+) uptake capacity (J(max)) and affinity (i.e., reduced K(m)), yet Cl(-) uptake did not change from its nonsaturating, low-capacity pattern. In the reverse experiment, Amazonian C. quinquefasciatus demonstrated plasticity in both Na(+) and Cl(-) uptake by significantly reducing rates when held in 4,000 micromol L(-1) NaCl for 3 d.  相似文献   

20.
Abrupt transfer of rainbow trout from freshwater to 65% seawater caused transient disturbances in extracellular fluid ionic composition, but homeostasis was reestablished 48 h posttransfer. Intestinal fluid chemistry revealed early onset of drinking and slightly delayed intestinal water absorption that coincided with initiation of NaCl absorption and HCO(3)(-) secretion. Suggestive of involvement in osmoregulation, relative mRNA levels for vacuolar H(+)-ATPase (V-ATPase), Na(+)-K(+)-ATPase, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-HCO(3)(-) cotransporter 1, and two carbonic anhydrase (CA) isoforms [a general cytosolic isoform trout cytoplasmic CA (tCAc) and an extracellular isoform trout membrane-bound CA type IV (tCAIV)], were increased transiently in the intestine following exposure to 65% seawater. Both tCAc and tCAIV proteins were localized to apical regions of the intestinal epithelium and exhibited elevated enzymatic activity after acclimation to 65% seawater. The V-ATPase was localized to both basolateral and apical regions and exhibited a 10-fold increase in enzymatic activity in fish acclimated to 65% seawater, suggesting a role in marine osmoregulation. The intestinal epithelium of rainbow trout acclimated to 65% seawater appears to be capable of both basolateral and apical H(+) extrusion, likely depending on osmoregulatory status and intestinal fluid chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号