首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
Hypoxic pulmonary hypertension (HPH) is an important pathophysiological process of a variety of cardiac and pulmonary diseases. But the mechanisms responsible for HPH are still not fully understood. The discoveries of endogenous gas signal molecules, nitric oxide (NO), and carbon monoxide (CO), have been moving the research of HPH to a new phase. Hydrogen sulfide (H2S), which is now being considered as the third new gas transmitter, was found to be possibly involved in the pathogenesis of HPH. But whether there exists an interaction between H2S and CO has not been clear in the pathogenesis of HPH. In this study, we found that H2S was significantly decreased in the pathogenesis of HPH. However, plasma CO level and the expressions of heme oxygenase (HO-1) protein and HO-1 mRNA were significantly increased. Exogenous supply of H2S could alleviate the elevation of pulmonary arterial pressure. At the same time, plasma CO level and the expressions of HO-1 protein and mRNA in pulmonary arteries were significantly increased. Whereas, exogenous supply of propargylglycine (PPG), an inhibitor of cystathionine gamma-lyase (CSE), decreased the plasma H2S content and worsened HPH. At the same time, plasma CO level and the expressions of HO-1 protein and mRNA in pulmonary arteries were decreased. The results showed that H2S could play a regulatory role in the pathogenesis of HPH through up-regulating CO/HO pathway.  相似文献   

2.
Hydrogen sulfide (H(2)S) is a newly found modulator in vascular system. This work showed that gene expression of cystathionine gamma-lyase (CSE), a H(2)S generating enzyme, and the activity of CSE in thoracic aorta were suppressed in hypertension rats. The plasma level of H(2)S also decreased in those rats. Exogenous administration of H(2)S could increase the plasma level of H(2)S and enhance the CSE activity of aorta. Exogenous administration of H(2)S also attenuated the elevation of pressure and lessened the aorta structural remodeling during the development of hypertension. In WKY rats, the gene expression and activity of CSE also decreased when the endogenous production of H(2)S was deprived by administration of DL-propargylglycine (specific inhibitor of CSE), accompanying the elevated pressure and the development of vascular remodeling. The results showed that endogenous H(2)S system was involved in both the maintenance of basal blood pressure and the development of hypertension. Exogenous H(2)S could exert beneficial effect on the pathogenesis of spontaneous hypertension.  相似文献   

3.
The present study was designed to explore the possible effect of L-arginine on endogenous hydrogen sulfide/cystathionine-gamma-lyase (H(2)S/CSE) pathway in the pathogenesis of pulmonary hypertension and pulmonary vascular structural remodeling induced by high pulmonary blood flow. Thirty-two male Sprague-Dawley rats were randomly divided into control group (n=11), shunt group (n=11) and shunt with L-arginine group (n=10). Rats in the shunt and shunt with L-arginine group underwent an abdominal aorta-inferior cava vein shunt operation. After 11 weeks of shunting, the plasma level of H2S and lung tissue H2S production rate in the shunt with L-arginine group were much higher than those in the shunt group (P<0.01). Meanwhile, the expression of CSE mRNA in the lung tissues of rats in the shunt with L-arginine group was increased significantly (P<0.01), and in situ hybridization showed that CSE mRNA expression was obviously up-regulated in the smooth muscle cells (SMCs) of the pulmonary arteries of shunted rats treated with L-arginine when compared with shunted rats without the treatment of L-arginine (P<0.01). In conclusion, H2S/CSE pathway was up-regulated by L-arginine in pulmonary hypertension induced by high blood flow with the attenuation of pulmonary hypertension and pulmonary vascular structural remodeling.  相似文献   

4.
5.
Hypoxic pulmonary vascular structural remodeling (HPVSR) is the important pathologic basis of hypoxic pulmonary hypertension (HPH). The discoveries of endogenous gaseous messenger molecules, nitric oxide (NO) and carbon monoxide (CO), have been moving the research of HPVSR to a very new phase. But the effect and significance of heme oxygenase (HO)/CO on the development of HPVSR have not been fully understood. In this study, we observed the alteration of endogenous HO/CO system in five time points during 14 days and found that the content of CO in lung homogenates in rats with HPVSR increased in a time-dependent double-peak manner. Exogenous supply of ZnPP-IX, an inhibitor of HO-1, decreased the content of CO in lung homogenate, decreased the expression of Fas and apoptotic cells in pulmonary artery smooth muscle cells (PASMCs), up-regulated the expression of PCNA in PASMCs, and worsened HPH and HPVSR of hypoxic rats. Meanwhile, exogenous supply of CO played an adverse action. The results showed that the up-regulation of HO/CO exerted a protective role in the development of HPVSR.  相似文献   

6.
目的:探讨内、外源性硫化氢(H2S)在脂多糖(LPS)所致大鼠急性肺损伤(ALI)中的作用并初探其机制。方法:将120只SD大鼠随机分为对照组、IPS组(经气管内滴注LPS复制ALI模型)、NaHS+LPS组和炔丙基甘氨酸(PPG)+LPS组。给药后4h或8h处死动物,测定肺系数;光镜观察肺组织形态学改变;化学法检测血浆H2S、NO和CO含量、肺组织丙二醛(MDA)含量、胱硫醚-γ-裂解酶(CSE)、诱导型一氧化氮合酶(iNOS)和血红素加氧酶(HO)活性以及支气管肺泡灌洗液(BALF)中中性粒细胞(PMN)数目和蛋白含量的变化;用免疫组织化学法检测肺组织iNOS、HO-1蛋白表达。再将血浆H2S含量与上述指标进行相关性分析。结果:气管内滴注LPS可引起肺组织明显的形态学改变;肺系数和肺组织MDA含量增加;BALF中PMN数目和蛋白含量增加;血浆H2S含量和肺组织CSE活性下降;肺组织iNOS活性、HO活性和iNOS蛋白表达、HO-1蛋白表达增强,血浆NO含量、CO含量增加。预先给予NaHS可显著减轻LPS所致上述指标的改变;而预先给予PIG可加重LPS所致肺损伤,使BALF中PMN数目和蛋白含量、血浆NO含量、肺组织iNOS活性和iNOS蛋白表达进一步增加,但对血浆CO含量、肺组织HO活性和HO-1蛋白表达无明显影响。HS含量与CSE活性、血浆CO含量、肺组织HO-1活性呈正相关(r值=0.945—0.987,P均〈0.01);与其他指标呈负相关(r值=-0.994~-0.943,P均〈0.01)。结论:H2S/CSE体系的下调在LPS所致大鼠Ⅲ的发病学中有一定作用,内、外源性H2S具有抗LPS所致Au的作用,该作用可能与其抗氧化效应、减轻PMN所致肺过度的炎症反应以及下调NO/iNOS体系、上调CO/HO—1体系有一定关系。  相似文献   

7.
8.
Pan Y  Yuan D  Zhang J  Shao C 《Mutation research》2011,707(1-2):67-73
The combined exposure to environmental toxicants such as heavy metals and radiation is an important research area in health protection. Here we explored cadmium induced radioadaptive response (RAR) and investigated the role of hydrogen sulfide (H(2)S) and ATM kinase in this response. Our data showed that the cadmium ions with a sub-lethal concentration could induce RAR in Chang liver cells towards subsequent γ-irradiation and this response could be abrogated by DL-propargylglycine (PPG), the endogenous H(2)S synthetase inhibitor of cystathionine γ-lyase (CSE), but not by aminooxyacetic acid (AOAA), the inhibitor of cystathionine β-synthase (CBS). Moreover, the pretreatment of cells with NaHS also stimulated cellular adaptive response to radiation. Both cadmium treatment and irradiation up-regulated the expression of CSE protein in a time-dependent manner but had no influence on the expression of CBS protein. In the primed cells, the time course of CBS expression showed no significant difference with the cells treated with 2Gy irradiation alone, however, the CSE expression was easier to reach the maximum level, indicating a more efficient H(2)S production by CSE. Moreover, the cadmium-induced RAR was totally suppressed by KU-55933, a specific ATM inhibitor that did not change the CSE expression after radiation. However, exogenous H(2)S decreased the phosphorylation level of radiation-induced ATM. In conclusion, the present results demonstrate firstly that H(2)S is involved in the cadmium induced cross-adaptive response to challenging radiation. CSE, rather than CBS, may mainly responsible for the H(2)S production during this RAR which may also be mediated by ATM pathway. However, the activation of CSE is independent of ATM but could negatively regulate the phosphorylation of ATM.  相似文献   

9.
The roles of hydrogen sulfide (H(2)S) and endoplasmic reticulum (ER) stress in doxorubicin (DOX)-induced cardiotoxicity are still unclear. This study aimed to dissect the hypothesis that H(2)S could protect H9c2 cells against DOX-induced cardiotoxicity by inhibiting ER stress. Our results showed that exposure of H9c2 cells to DOX significantly inhibited the expression and activity of cystathionine-γ-lyase (CSE), a synthetase of H(2)S, accompanied by the decreased cell viability and the increased reactive oxygen species (ROS) accumulation. In addition, exposure of cells to H(2)O(2) (an exogenous ROS) mimicked the inhibitory effect of DOX on the expression and activity of CSE. Pretreatment with N-acetyl-L: -cysteine (NAC) (a ROS scavenger) attenuated intracellular ROS accumulation, cytotoxicity, and the inhibition of expression and activity of CSE induced by DOX. Notably, the ER stress-related proteins, including glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) were obviously upregulated in DOX-treated H9c2 cells. Pretreatment with sodium hydrosulfide (NaHS, a H(2)S donor) before DOX exposure markedly suppressed DOX-induced overexpressions of GRP78 and CHOP, cytotoxicity and oxidative stress. In conclusion, we have demonstrated that ROS-mediated inhibition of CSE is involved in DOX-induced cytotoxicity in H9c2 cells, and that exogenous H(2)S can confer protection against DOX-induced cardiotoxicity partly through inhibition of ER stress.  相似文献   

10.
Hydrogen sulfide (H2S) has been shown recently to function as an important gasotransmitter. The present study investigated the vascular effects of H2S, both exogenously applied and endogenously generated, on resistance mesenteric arteries of rats and the underlying mechanisms. Both H2S and NaHS evoked concentration-dependent relaxation of in vitro perfused rat mesenteric artery beds (MAB). The sensitivity of MAB to H2S (EC50, 25.2 +/- 3.6 microM) was about fivefold higher than that of rat aortic tissues. Removal of endothelium or coapplication of charybdotoxin and apamin to endothelium-intact MAB significantly reduced the vasorelaxation effects of H2S. The H2S-induced relaxation of MAB was partially mediated by ATP-sensitive K+ (KATP) channel activity in vascular smooth muscle cells. Pinacidil (EC50, 1.7 +/- 0.1 microM, n=6) mimicked, but glibenclamide (10 microM, n=6) suppressed, the vasorelaxant effect of H2S. KATP channel currents in isolated mesenteric artery smooth muscle cells were significantly augmented by H2S. L-cysteine, a substrate of cystathionine-gamma-lyase (CSE), at 1 mM increased endogenous H2S production by sixfold in rat mesenteric artery tissues and decreased contractility of MAB. DL-propargylglycine (a blocker of CSE) at 10 microM abolished L-cysteine-dependent increase in H2S production and relaxation of MAB. Our results demonstrated a tissue-specific relaxant response of resistance arteries to H2S. The stimulation of KATP channels in vascular smooth muscle cells and charybdotoxin/apamin-sensitive K+ channels in vascular endothelium by H2S represents important cellular mechanisms for H2S effect on MAB. Our study also demonstrated that endogenous CSE can generate sufficient H2S from exogenous L-cysteine to cause vasodilation. Future studies are merited to investigate direct contribution of endogenous H2S to regulation of vascular tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号