首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Multiple sequence alignment (MSA) is a crucial first step in the analysis of genomic and proteomic data. Commonly occurring sequence features, such as deletions and insertions, are known to affect the accuracy of MSA programs, but the extent to which alignment accuracy is affected by the positions of insertions and deletions has not been examined independently of other sources of sequence variation. We assessed the performance of 6 popular MSA programs (ClustalW, DIALIGN-T, MAFFT, MUSCLE, PROBCONS, and T-COFFEE) and one experimental program, PRANK, on amino acid sequences that differed only by short regions of deleted residues. The analysis showed that the absence of residues often led to an incorrect placement of gaps in the alignments, even though the sequences were otherwise identical. In data sets containing sequences with partially overlapping deletions, most MSA programs preferentially aligned the gaps vertically at the expense of incorrectly aligning residues in the flanking regions. Of the programs assessed, only DIALIGN-T was able to place overlapping gaps correctly relative to one another, but this was usually context dependent and was observed only in some of the data sets. In data sets containing sequences with non-overlapping deletions, both DIALIGN-T and MAFFT (G-INS-I) were able to align gaps with near-perfect accuracy, but only MAFFT produced the correct alignment consistently. The same was true for data sets that comprised isoforms of alternatively spliced gene products: both DIALIGN-T and MAFFT produced highly accurate alignments, with MAFFT being the more consistent of the 2 programs. Other programs, notably T-COFFEE and ClustalW, were less accurate. For all data sets, alignments produced by different MSA programs differed markedly, indicating that reliance on a single MSA program may give misleading results. It is therefore advisable to use more than one MSA program when dealing with sequences that may contain deletions or insertions, particularly for high-throughput and pipeline applications where manual refinement of each alignment is not practicable.  相似文献   

2.
The SEQALIGN programs1 described in this report aid in the assembly of up to 100 individual overlapping DNA sequences generated by M-13 subcloning and sequencing methods. The program produces a printout of the aligned sequences presented in register. Use of the program will be facilitated because 1) it is written with the Microsoft BASIC interpreter, 2) sequence data may be entered and edited using WORDSTAR or similar word processing programs, and 3) hardware requirements for execution of the program on CP/M or MS-DOS (IBM-PC compatible) systems are minimal.  相似文献   

3.
Kumaran D  Maguire EA 《Neuron》2006,49(4):617-629
Sequence disambiguation, the process by which overlapping sequences are kept separate, has been proposed to underlie a wide range of memory capacities supported by the hippocampus, including episodic memory and spatial navigation. We used functional magnetic resonance imaging (fMRI) to explore the dynamic pattern of hippocampal activation during the encoding of sequences of faces. Activation in right posterior hippocampus, only during the encoding of overlapping sequences but not nonoverlapping sequences, was found to correlate robustly with a subject-specific behavioral index of sequence learning. Moreover, our data indicate that hippocampal activation in response to elements common to both sequences in the overlapping sequence pair, may be particularly important for accurate sequence encoding and retrieval. Together, these findings support the conclusion that the human hippocampus is involved in the earliest stage of sequence disambiguation, when memory representations are in the process of being created, and provide empirical support for contemporary computational models of hippocampal function.  相似文献   

4.
Microcomputer programs for DNA sequence analysis.   总被引:21,自引:5,他引:16       下载免费PDF全文
Computer programs are described which allow (a) analysis of DNA sequences to be performed on a laboratory microcomputer or (b) transfer of DNA sequences between a laboratory microcomputer and another computer system, such as a DNA library. The sequence analysis programs are interactive, do not require prior experience with computers and in many other respects resemble programs which have been written for larger computer systems (1-7). The user enters sequence data into a text file, accesses this file with the programs, and is then able to (a) search for restriction enzyme sites or other specified sequences, (b) translate in one or more reading frames in one or both directions in order to find open reading frames, or (c) determine codon usage in the sequence in one or more given reading frames. The results are given in table format and a restriction map is generated. The modem program permits collection of large amounts of data from a sequence library into a permanent file on the microcomputer disc system, or transfer of laboratory data in the reverse direction to a remote computer system.  相似文献   

5.
6.
GenBank.   总被引:5,自引:2,他引:3       下载免费PDF全文
The GenBank sequence database continues to expand its data coverage, quality control, annotation content and retrieval services. GenBank is comprised of DNA sequences submitted directly by authors as well as sequences from the other major public databases. An integrated retrieval system, known as Entrez, contains data from GenBank and from the major protein sequence and structural databases, as well as related MEDLINE abstracts. Users may access GenBank over the Internet through the World Wide Web and through special client-server programs for text and sequence similarity searching. FTP, CD-ROM and e-mail servers are alternate means of access.  相似文献   

7.
Protein sequences predicted from metagenomic datasets are annotated by identifying their homologs via sequence comparisons with reference or curated proteins. However, a majority of metagenomic protein sequences are partial-length, arising as a result of identifying genes on sequencing reads or on assembled nucleotide contigs, which themselves are often very fragmented. The fragmented nature of metagenomic protein predictions adversely impacts homology detection and, therefore, the quality of the overall annotation of the dataset. Here we present a novel algorithm called GRASP that accurately identifies the homologs of a given reference protein sequence from a database consisting of partial-length metagenomic proteins. Our homology detection strategy is guided by the reference sequence, and involves the simultaneous search and assembly of overlapping database sequences. GRASP was compared to three commonly used protein sequence search programs (BLASTP, PSI-BLAST and FASTM). Our evaluations using several simulated and real datasets show that GRASP has a significantly higher sensitivity than these programs while maintaining a very high specificity. GRASP can be a very useful program for detecting and quantifying taxonomic and protein family abundances in metagenomic datasets. GRASP is implemented in GNU C++, and is freely available at http://sourceforge.net/projects/grasp-release.  相似文献   

8.
9.

Background  

High quality sequence alignments of RNA and DNA sequences are an important prerequisite for the comparative analysis of genomic sequence data. Nucleic acid sequences, however, exhibit a much larger sequence heterogeneity compared to their encoded protein sequences due to the redundancy of the genetic code. It is desirable, therefore, to make use of the amino acid sequence when aligning coding nucleic acid sequences. In many cases, however, only a part of the sequence of interest is translated. On the other hand, overlapping reading frames may encode multiple alternative proteins, possibly with intermittent non-coding parts. Examples are, in particular, RNA virus genomes.  相似文献   

10.
GenBank.   总被引:3,自引:1,他引:2       下载免费PDF全文
The GenBank(R) sequence database (http://www.ncbi.nlm.nih.gov/) incorporates DNA sequences from all available public sources, primarily through the direct submission of sequence data from individual laboratories and from large-scale sequencing projects. Most submitters use the BankIt (WWW) or Sequin programs to send their sequence data. Data exchange with the EMBL Data Library and the DNA Data Bank of Japan helps ensure comprehensive worldwide coverage. GenBank data is accessible through NCBI's integrated retrieval system, Entrez , which integrates data from the major DNA and protein sequence databases along with taxonomy, genome and protein structure information. MEDLINE(R) abstracts from published articles describing the sequences are also included as an additional source of biological annotation. Sequence similarity searching is offered through the BLAST series of database search programs. In addition to FTP, e-mail and server/client versions of Entrez and BLAST, NCBI offers a wide range of World Wide Web retrieval and analysis services of interest to biologists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号