首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a ‘microbial imprint hypothesis’ is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers.

Methods

Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods.

Key Results

Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence.

Conclusions

The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on pollination services in plant communities.  相似文献   

2.
紫椴是东北东部地区原始针阔混交林中优势种或共优种之一,是优质的用材树种,更是重要的蜜源植物。本文研究长白山地区紫椴从单株到种群(林分)的泌蜜量,建立单株泌蜜量回归模型,并估计林分尺度泌蜜量,分析紫椴泌蜜量与胸高断面积以及材积或蓄积之间的关系。结果表明: 紫椴单花开花时间为6~8 d,泌蜜时间为5 d,平均每朵花总泌蜜量为8.58 mg。花蜜的糖浓度在一天中有变化,中午高于早晨和傍晚,平均糖浓度为37.7%。样地紫椴的平均胸径为40 cm,单株开花量为18万个,泌蜜量为1.56 kg(或纯糖0.588 kg)。每公顷紫椴的泌蜜量为79~147 kg(或0.0686~0.1285 m3,纯糖29.78~55.42 kg)。林分泌蜜量与总断面积以及蓄积量密切相关,可以利用森林资源调查数据估算紫椴泌蜜量。  相似文献   

3.
We tested the removal effect on nectar production in four bat‐pollinated cerrado flowers. We compared the amount of nectar after 7–12 removals with the accumulated nectar in non‐manipulated flowers after 12 h. In all, but one species, removals increased volume by 1.5–4.6 times and sugar content by 1.6–4 times, which may affect flower visitation by bats, pollen flow, and reproduction. Abstract in Portuguese is available in the online version of this article.  相似文献   

4.
Nectar, the most common floral reward, is generally used to determine whether an orchid species involves deceptive pollination. Estimates of the deceptive pollination systems with nectarless flowers have ranged from one quarter to one third of the nearly 30 000 species of orchids. These estimates, however, are biased towards temperate-zone, usually terrestrial, orchids. Here we investigated nectar production and property in 34 epiphytic orchid species of the Southeast Asian genus Dendrobium. Twenty-one species were observed producing nectar. The amount and sugar concentration (in bagged flowers) of 12 species varied from 0.45 to 2.78 μL and from 8.1% to 31.1%. The nectar was sucrose-dominant, typical of bee-pollinated flowers. Reconstruction of phylogenetic relationship indicated that transition of nectar secretion occurred in the genus. Spur length was positively correlated with flower size but species with relatively long spurs tended to produce small volume of nectar. Nectar production was strikingly variable among and within individuals in some species, suggesting that a vital measurement of bagged and fresh flowers is needed. Given that the quantitative measurement of nectar or floral reward in orchid species remains scarce, an estimate of deceptive pollination systems awaits further survey in diverse genera.  相似文献   

5.
 We studied nectar characteristics during the long flowering period (late June to end of November) in two populations of Linaria vulgaris (L.) Mill. spontaneously growing in the Botanical Gardens of Siena University (Tuscany, central Italy). The two populations were close to each other but they differed in blooming period. Plants of population 1 sprouted in May and flowered from the end of June to the end of September. Population 2 sprouted at the end of August and flowered from September to the end of November. Differences in nectar production and composition were found between and within populations. Flowers of population 1 produced a very small amount of nectar (not collectable) that remained on the nectary surface. The quantity of nectar increased in late September, when each flower produced 2–3 μl of nectar that flowed into the spur. Total sugar concentration was 175.8 mg/ml in young flowers. Flowers of population 2 produced 5–8 μl of nectar with a total sugar concentration of 200.9 mg/ml in the young stage. In bagged senescent flowers nectar volume decreased in both populations and nectar sugar concentration decreased down to 11.6 mg/ml in population 2 and increased up to 289.6 mg/ml in population 1. For both populations, the decrease in nectar volume in bagged flowers may have been due to water loss by evaporation. In population 2, the decrease in sugar concentration may have been due to nectar reabsorption that was never observed in population 1. Nectar variability is discussed in relation to insect visits and seed set. Received August 14, 2002; accepted December 17, 2002 Published online: June 2, 2003  相似文献   

6.
The richness and seasonal variation of ant-plant interactions were compared in four habitats in México: lowland tropical dry forest (La Mancha, Veracruz), coastal sand dune matorral (San Benito, Yucatán), semiarid highland vegetation (Zapotitlán, Puebla), and lower montane humid forest (Xalapa, Veracruz). The effects of temperature and precipitation on the seasonal distribution of the number of ant-plant interactions differed among habitats. The general linear models fitted to the ant-plant interaction curves explained 78.8 percent of the variation for La Mancha, 80.1 percent for Zapotitlán, 18 percent for San Benito, and 29.5 percent for Xalapa. Even though rainfall is low in Zapotitlán and San Benito, minimum temperature was the most important factor accounting for the seasonal distribution and low number of interactions. At La Mancha, with milder minimum temperatures and higher water availability, temperature alone did not account for the seasonal distribution and number of interactions, whereas the effect of the precipitation × temperature interaction was highly significant. Xalapa exhibits the lowest temperatures and the highest precipitation, but the role of these factors was only marginal. We suggest that the vegetation at Xalapa, a mixture of tropical and temperate floristic elements, constrains ant-plant interactions due to a limited presence of nectaries. Also, ants are less abundant in cool and relatively aseasonal habitats. The other habitats have tropical floristic elements that are abundant and frequently have nectar-producing structures. We report considerable variation among habitats in the number and seasonal distribution of ant-plant interactions, and suggest that it is due to the effect of variation in environmental parameters, the richness of plants with nectaries in the vegetation, and habitat heterogeneity.  相似文献   

7.
8.
Bees get a head start on honey production   总被引:1,自引:0,他引:1  
Nectar concentration is assumed to remain constant during transport by honeybees between flowers and hive. We sampled crop contents of nectar foragers on Aloe greatheadii var. davyana, a major winter bee plant in South Africa. The nectar is dilute (approx. 20% w/w), but the crop contents of bees captured on flowers are significantly more concentrated. In returning foragers, the concentration increases further to 38–40%, accompanied by a volume decrease. The doubling of sugar concentration suggests that nectar is regurgitated onto the tongue and evaporated during foraging and on the return flight. Processing of the dilute nectar into honey thus begins early, aided by low ambient humidities. This has implications for honeybee thermoregulation, water balance and energetics during foraging, and for the communication of nectar quality to recruits.  相似文献   

9.
10.
We compared flower visitation patterns of two coexisting honey bees, Apis mellifera Linnaeus and Apis cerana japonica Radoszkowski, on 20 plant species, including three exotics, under natural conditions in Nara, Japan, from April to August 2012. We also measured flower color based on bee color vision (15 flower species), nectar volume (nine species) and nectar concentration (eight species). Flowers colored white, pink, red, purple and cream were classified as bee‐blue‐green, and yellow was classified as bee‐green. Apis cerana visited 14 plant species and A. mellifera visited 11. Although the two Apis species are similar in morphology, they visited different plants: in particular, A. cerana visited native plant species more often than did A. mellifera. Both A. mellifera and A. cerana visited not only nectariferous flowers but also those with no nectar. We also found different visitation patterns between A. cerana and A. mellifera: Apis cerana more often visited flowers with smaller color angle (bee‐blue‐green), lower chroma and higher brightness, and flowers secreting nectars of higher concentration and smaller volume than did A. mellifera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号