首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 262 毫秒
1.
A variety of evidence indicates the presence of a circulating ligand to the Na, K ATPase molecule that is involved in the regulation of extracellular sodium metabolism. To examine the potential role of endogenous ligands to the Na, K ATPase molecule in the regulation of intracellular sodium metabolism, the tissue distribution of digitalis-like activity was quantitated in several brain regions and peripheral organs. The digitalis-like activity of desalted and delipidated extracts of tissue was widely distributed and produced a displacement of tritiated ouabain that was parallel to the displacement produced by cold ouabain. These results suggest that tissue contains an endogenous ligand to the Na, K ATPase molecule and that this ligand may regulate intracellular sodium metabolism in an autocoid-like manner.  相似文献   

2.
Increasing experimental evidences suggest an involvement of an endogenous Na+/K+ ATPase inhibitor in regulating water and electrolytes balance as well as in the pathogenesis of hypertension. However, conflicting results on the nature and the chemical structure of this substance still make it difficult to understand exactly its physiological mechanism of action. In the present study an attempt was made to purify a Na+/K+ ATPase inhibitor from hypertensives' plasma by solid phase extraction followed by 2 HPLC steps using reverse and normal phase columns. The fractions, from both columns, were able to inhibit Na+/K+ ATPase, 3H-ouabain binding to enzyme, ouabain sensitive 86Rb uptake and pNPPase activity in a manner not affected by boiling. Ultrafiltration experiments demonstrate that inhibitory activity is largely due to a low-molecular weight substance. These findings seem to confirm the presence in hypertensives plasma of a Na+/K+ ATPase inhibitor with some similarities with ouabain.  相似文献   

3.
The distribution of Na pump sites (Na+-K+ ATPase) in the acinar cells of dog submandibular gland was demonstrated by light and electron microscopical radioautography of 3H-ouabain binding sites and electron microscopical ATPase cytochemistry. The grains of 3H-ouabain by light microscopical radioautography were localized to the basal parts of acini and/or the striated ducts, and a small quantity of the grains was also present on the luminal parts of acini. The grains of 3H-ouabain by electron microscopical radioautography and the reaction products of ATPase were found to be localized on the basolateral plasma membrane of both serous and mucous cells, while slightly on the microvilli of the luminal plasma membranes. The present evidence that the distribution of ATPase on the acinar cells determined by the cytochemistry is well concomitant with that of 3H-ouabain binding sites on the acinar cells by the radioautography, suggests that the above mentioned ATPase is Na+-K+ ATPase, a Na pump. The relationship of the distribution of the Na+-K+ ATPase and the cation transport of the plasma membranes in the acinar cells of the dog submandibular gland are discussed.  相似文献   

4.
Interactions of the three transported Na ions with the Na/K pump remain incompletely understood. Na/K pump crystal structures show that the extended C terminus of the Na,K–adenosine triphosphatase (ATPase) α subunit directly contacts transmembrane helices. Deletion of the last five residues (KETYY in almost all Na/K pumps) markedly lowered the apparent affinity for Na activation of pump phosphorylation from ATP, a reflection of cytoplasmic Na affinity for forming the occluded E1P(Na3) conformation. ATPase assays further suggested that C-terminal truncations also interfere with low affinity Na interactions, which are attributable to extracellular effects. Because extracellular Na ions traverse part of the membrane’s electric field to reach their binding sites in the Na/K pump, their movements generate currents that can be monitored with high resolution. We report here electrical measurements to examine how Na/K pump interactions with extracellular Na ions are influenced by C-terminal truncations. We deleted the last two (YY) or five (KESYY) residues in Xenopus laevis α1 Na/K pumps made ouabain resistant by either of two kinds of point mutations and measured their currents as 10-mM ouabain–sensitive currents in Xenopus oocytes after silencing endogenous Xenopus Na/K pumps with 1 µM ouabain. We found the low affinity inhibitory influence of extracellular Na on outward Na/K pump current at negative voltages to be impaired in all of the C-terminally truncated pumps. Correspondingly, voltage jump–induced transient charge movements that reflect pump interactions with extracellular Na ions were strongly shifted to more negative potentials; this signals a several-fold reduction of the apparent affinity for extracellular Na in the truncated pumps. Parallel lowering of Na affinity on both sides of the membrane argues that the C-terminal contacts provide important stabilization of the occluded E1P(Na3) conformation, regardless of the route of Na ion entry into the binding pocket. Gating measurements of palytoxin-opened Na/K pump channels additionally imply that the C-terminal contacts also help stabilize pump conformations with occluded K ions.  相似文献   

5.
The fluorescein 5'-isothiocyanate (FITC)-labeled lamb kidney Na+/K+-ATPase has been used to investigate enzyme function and ligand-induced conformational changes. In these studies, we have determined the effects of two monoclonal antibodies, which inhibit Na+/K+-ATPase activity, on the conformational changes undergone by the FITC-labeled enzyme. Monitoring fluorescence intensity changes of FITC-labeled enzyme shows that antibody M10-P5-C11, which inhibits E1 approximately P intermediate formation (Ball, W.J. (1986) Biochemistry 25, 7155-7162), has little effect on the E1 in equilibrium E2 transitions induced by Na+, K+, Mg2+ Pi or Mg2+. ouabain. The M10-P5-C11 epitope, which appears to reside near the ATP-binding site, does not significantly participate in these ligand interactions. In contrast, we find that antibody 9-A5 (Schenk, D.B., Hubert, J.J. and Leffert, H.L. (1984) J. Biol. Chem. 259, 14941-14951) inhibits both the Na+/K+-ATPase and p-nitrophenylphosphatase activity. Its binding produces a 'Na+-like' enhancement in FITC fluorescence, reduces the ability of K+ to induce the E1 in equilibrium E2 transition and converts E2.K+ to an E1 conformation. Mg2+ binding to the enzyme alters both the conformation of this epitope region and its coupling of ligand interactions. In the presence of Mg2+, 9-A5 binding stabilizes an E1.Mg2+ conformation such that K+-, Pi- and ouabain-induced E1----E2 or E1----E2-Pi transitions are inhibited. Oubain and Pi added together overcome this stabilization. These studies indicate that the 9-A5 epitope participates in the E1 in equilibrium E2 conformational transitions, links Na+-K+ interactions and ouabain extracellular binding site effects to both the phosphorylation site and the FITC-binding region. Antibody-binding studies and direct demonstration of 9-A5 inhibition of enzyme phosphorylation by [32P]Pi confirm the results obtained from the fluorescence studies. Antibody 9-A5 has also proven useful in demonstrating the independence of Mg2+ ATP and Mg2+Pi regulation of ouabain binding. In addition, [3H]ouabain and antibody-binding studies demonstrate that FITC-labeling alters the enzyme's responses to Mg2+ as well as ATP regulation.  相似文献   

6.
The (Na+ + K+)-activated ATPase catalyzes the K+-activated hydrolysis of 3-O-methylfluorescein phosphate (3OMFP) with a Km of 50 microM, nearly two orders of magnitude lower than the Km for nitrophenyl phosphate, 3 mM. Both ATP and nitrophenyl phosphate are competitors toward 3OMFP with Ki values corresponding to their Km values (for ATP that at the low-affinity sites of the E2 conformation). Enzyme treated with fluorescein isothiocyanate (FITC) such that 60% of the (Na+ + K+)-ATPase activity is lost still hydrolyzes both 3OMFP and nitrophenyl phosphate: the apparent Km values are increased less than 2-fold and the Vmax is unaffected. ATP still inhibits these K+-phosphatase reactions of the FITC-treated enzyme, and this inhibition can exceed the 40% of residual (Na+ + K+)-ATPase activity. Evaluation of a kinetic model indicates that the Ki for ATP is increased about an order of magnitude by FITC-binding. Similar results obtain with trinitrophenyl-ATP (TNP-ATP) as inhibitor, in this case with Ki values in the micromolar range. Finally, FITC treatment increases K+-activated ADPase activity. These observations are interpreted as the fluorescein ring of 3OMFP binding to the adenine pocket of the substrate site, thereby conferring high affinity, just as the fluorescein ring of FITC binding to the adenine pocket in the E1 conformation permits specific linkage of the isothiocyanate chain to a particular lysine, Lys-501. Then, coincident with the transition to the E2 conformation, which bears the low-affinity site for ATP and which catalyzes the K+-phosphatase reaction, the FITC molecule tethered to Lys-501 is pulled from the adenine pocket: allowing 3OMFP and ADP to bind as substrates and ATP and TNP-ATP as inhibitors, albeit in altered conformation. The E1 to E2 transition thus involves not only a change from high to low affinity for ATP, but also a distortion of the adenine pocket and the orientation between Lys-501 and Asp-369, the residue associated with catalysis.  相似文献   

7.
Inhibitor and ion binding sites on the gastric H,K-ATPase   总被引:2,自引:0,他引:2  
Munson K  Garcia R  Sachs G 《Biochemistry》2005,44(14):5267-5284
The gastric H,K-ATPase catalyzes electroneutral exchange of H(+) for K(+) as a function of enzyme phosphorylation and dephosphorylation during transition between E(1)/E(1)-P (ion site in) and E(2)-P/E(2) (ion site out) conformations. Here we present homology modeling of the H,K-ATPase in the E(2)-P conformation as a means of predicting the interaction of the enzyme with two known classes of specific inhibitors. All known proton pump inhibitors, PPIs, form a disulfide bond with cysteine 813 that is accessible from the luminal surface. This allows allocation of the binding site to a luminal vestibule adjacent to Cys813 enclosed by part of TM4 and the loop between TM5 and TM6. K(+) competitive imidazo-1,2alpha-pyridines also bind to the luminal surface of the E(2)-P conformation, and their binding excludes PPI reaction. This overlap of the binding sites of the two classes of inhibitors combined with the results of site-directed mutagenesis and cysteine cross-linking allowed preliminary assignment of a docking mode for these reversible compounds in a position close to Glu795 that accounts for the detailed structure/activity relationships known for these compounds. The new E(2)-P model is able to assign a possible mechanism for acid secretion by this P(2)-type ATPase. Several ion binding side chains identified in the sr Ca-ATPase by crystallography are conserved in the Na,K- and H,K-ATPases. Poised in the middle of these, the H,K-ATPase substitutes lysine in place of a serine implicated in K(+) binding in the Na,K-ATPase. Molecular models for hydronium binding to E(1) versus E(2)-P predict outward displacement of the hydronium bound between Asp824, Glu820, and Glu795 by the R-NH(3)(+) of Lys791 during the conformational transition from E(1)P and E(2)P. The site for luminal K(+) binding at low pH is proposed to be between carbonyl oxygens in the nonhelical part of the fourth membrane span and carboxyl oxygens of Glu795 and Glu820. This site of K(+) binding is predicted to destabilize hydrogen bonds between these carboxylates and the -NH(3)(+) group of Lys791, allowing the Lys791 side chain to return to its E(1) position.  相似文献   

8.
The Kd for ouabain-sensitive K+ or Rb+ binding to Na+,K(+)-ATPase was determined by the centrifugation method with radioactive K+ and Rb+ in the presence of various combinations of Na+, ATP, adenylylimidodiphosphate (AMPPNP), adenylyl-(beta,gamma-methylene)diphosphonate (AMPPCP), Pi, and Mg2+. From the results of the K+ binding experiments, Kd for Na+ was estimated by using an equation describing the competitive inhibition between the K+ and Na+ binding. 1) The Kd for K+ binding was 1.9 microM when no ligand was present. Addition of 2 mM Mg2+ increased the Kd to 15-17 microM. In the presence of 2 mM Mg2+, addition of 3 mM AMPPCP with or without 3 mM Na+ increased the Kd to 1,000 or 26 microM, respectively. These Kds correspond to those for K+ of Na.E1.AMPPCPMg or E1.AMPPCPMg, respectively. 2) Addition of 4 mM ATP with or without 3 mM Na+ decreased the Kd from 15-17 microM to 5 or 0.8 microM, respectively. Because the phosphorylated intermediate was observed but ATPase activity was scarcely observed in the K+ binding medium containing 3 mM ATP and 2 mM Mg2+ in the absence of Na+ as well as in the presence of Na+ at 0 degrees C, it is suggested that K+ binds to E2-P.Mg under these ligand conditions. 3) The Kd for Na+ of the enzyme in the presence of 3 mM AMPPCP or 4 mM ATP with Mg2+ was estimated to be 80 or 570 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A microsomal fraction rich in (Na+ + K+)ATPase activity has been isolated from the outer medulla of pig kidney. The ability of this preparation to form phosphoenzyme on incubation with [gamma-32P]ATP and to bind [3H]ouabain was studied when its sulfatide was hydrolyzed by arylsulfatase treatment. The K+-dependent hydrolysis of the Na+-dependent phosphorylated intermediate as well as the ouabain binding were inactivated in direct relation to the breakdown of sulfatide. Both characteristics of the (Na+ + K+)ATPase preparation, lost by arylsulfatase treatment, were partially restored by the sole addition of sulfatide. These experiments indicate that sulfatide may play a role in sodium ion transport either in the conformational transition of the K+-insensitive phosphointermediate, E1P, to the K+-sensitive intermediate, E2P, or in the configuration of the high-affinity binding site for K+ of the E2P form. In addition, this glycolipid may have a specific role in the proteolipidic subunit that binds ouabain.  相似文献   

10.
A Abbott  W J Ball 《Biochemistry》1992,31(45):11236-11243
Monoclonal antibody M7-PB-E9 binds the sheep kidney Na+,K(+)-ATPase alpha-subunit with high affinity (Kd = 3 nM) and inhibits enzyme turnover in competition with ATP, and, like ATP, in the presence of Mg2+, it stimulates the rate of ouabain binding [Ball, W. J. (1984) Biochemistry 23, 2275-2281]. In this study, covalent attachment of fluorescein 5'-isothiocyanate (FITC) at (or near) the enzyme's ATP binding site did not alter the antibody's affinity for alpha nor did bound antibody alter the anisotropy of (r = 0.36) or the solvent accessibility of iodide to bound FITC. Further, in its E1Na+ conformation (4 mM NaCl), the enzyme's affinity for the ATP congener eosin was unaltered by the bound antibody (Kd = 9 nM). In contrast, partial E2 conformations induced by KCl lowered eosin affinities (0.2 mM KCl, Kd = 28 nM; 0.4 mM, Kd = 86 nM), and M7-PB-E9 reduced these affinities further (Kd = 66 and 130 nM, respectively). By monitoring the fluorescence changes of the FITC-labeled enzyme, the antibody was found to assist several ligand-induced conformational transitions from E1 (E1Na+ or E1Tris) to E2 (E2K+, E2-P(i)Mg2+, or E2Mg2+.ouabain) states, and inhibit the E2K(+)-->E1Na+ transition. Antibody binding alone, however, did not appear to significantly alter enzyme conformation. The antibody therefore is not directed against the ATP site but binds to a region of alpha distinct from any ligand binding site and which plays an important role in the E1<-->E2 transitions.  相似文献   

11.
An endogenous Na+, K+-ATPase inhibitor termed endobain E has been isolated from rat brain which shares several biological properties with ouabain. This cardiac glycoside possesses neurotoxic properties attributable to Na+, K+-ATPase inhibition, which leads to NMDA receptor activation, thus supporting the concept that Na+/K+ gradient impairment has a critical impact on such receptor function. To evaluate potential direct effects of endobain E and ouabain on NMDA receptors, we assayed [3H]dizocilpine binding employing a system which excludes ionic gradient participation. Brain membranes thoroughly washed and stored as pellets ('non-resuspended' membranes) or after resuspension in sucrose ('resuspended' membranes) were employed. Membrane samples were incubated with 4 or 10 nM ligand with or without added endobain E or ouabain, in the presence of different glutamate plus glycine combinations, with or without spermidine. [3H]dizocilpine basal binding and Na+, K+- and Mg2+-ATPase activities proved very similar in 'non-resuspended' or 'resuspended' membranes. Endobain E decreased [3H]dizocilpine binding to 'resuspended' membranes in a concentration-dependent manner, attaining roughly 50% binding inhibition with the highest endobain E concentration assayed. Among tested conditions, only in 'resuspended' membranes, with 4 nM ligand and with 1x10(-8) M glutamate plus 1x10(-5) M glycine, was [3H]dizocilpine binding enhanced roughly +24% by ouabain (1 mM). After Triton X-100 membrane treatment, which drastically reduces Na+, K+-ATPase activity, the effect of ouabain on binding was lost whereas that of endobain E remained unaltered. Results indicate that not only membrane preparation but also treatment and storage are crucial to observe direct endobain E and ouabain effects on NMDA receptor, which are not attributable to changes in Na+, K+-ATPase activity or to Na+/K+ equilibrium alteration.  相似文献   

12.
D M Chipman  A Lev 《Biochemistry》1983,22(19):4450-4459
Glutaraldehyde treatment of electroplax membrane preparations of Na,K-ATPase leads to irreversible changes in the enzymic behavior of the protein, which are not due to modification of the active site. When the glutaraldehyde treatment is carried out in a medium containing K+ and without Na+, the "K+-modified enzyme" so produced shows the following changes in enzymic properties: The steady-state phosphorylation by ATP and the rate of ATP-ADP exchange are decreased to approximately 40% of control, while Na,K-ATPase activity decreases to approximately 15% of control. Phosphatase activity is decreased very little, but the potassium activation parameters of the reaction are changed, from K0.5 approximately equal to 5 mM and nH = 1.9 in control to K0.5 approximately equal to 0.5 mM and nH = 1 in K+-modified enzyme. KI(app) for nucleotide inhibition of phosphatase activity is increased significantly. Changes in the cation dependence of the ATPase reaction are also observed. All of these effects can be explained by assuming that the cross-linking of surface groups in protein subunits when they are in conformation E2 shifts the intrinsic conformational equilibrium of the enzyme toward E2. We considered the simplest mathematical model for the coupling between K+ binding and the conformational equilibrium, with equivalent potassium sites that must be simultaneously in the same state. If one assumes that the potassium activation of phosphatase activity in the K+-modified enzyme reflects the affinity for K+ of E2, the behavior of the phosphatase activity in the native enzyme can be fit if there are only two potassium sites, whose affinity is 80-fold higher in E2 than in E1, and the equilibrium constant for E2 in equilibrium E1 is about 250. The same sites can explain the activation of dephosphorylation during ATP hydrolysis. Independent of the model chosen, potassium ions must be required for the catalytic action of form E2 and cannot be merely "allosteric activators". The enzyme modified with glutaraldehyde in a medium containing Na+ also has interesting properties, but their rationalization is less straightforward. The Na,K-ATPase activity is inhibited more than the "partial reactions", as in the K+-modified enzyme. We suggest that this is a generally expected result of modifications of the enzyme.  相似文献   

13.
We studied conformational changes of purified renal sodium plus potassium ion-transport adenosine triphosphatase (ATP phosphohydrolase, EC 3.6.1.3) labeled with fluorescein isothiocyanate. Fluorescein covalently binds to the alpha-subunit of the enzyme and inhibits the ATPase but not the p-nitrophenylphosphatase activity. Four unphosphorylated and three phosphorylated conformations were distinguished by the level of fluorescence and by the rate of its change (relative fluorescence is shown in percentages). Fluorescence of the ligand-free form (E1, 100%) was increased by Na+ (E1.Na form, 103%) and quenched by K+ (E2.K, 78%) at a site of high affinity (K0.5 for K+ = 0.07 mM). Mg2+ did not alter fluorescence of E1 or E1.Na but raised that of E2.K (E2.K.Mg form, 85-90%). Addition of excess Na+ to the E2.K.Mg form restored high fluorescence but the rate of transition from E2.K.Mg to E1.Na became progressively slower with increasing Mg2+ concentration. Two phosphorylated conformations, (E2-P).Mg (82%) and (E2-P).Mg.K (82%) were differentiated by a faster turnover of the latter form. A third conformation, (E2-P).Mg.ouabain, had the lowest fluorescence (56%) and its formation allowed the binding of ouabain to the phosphoenzyme. Reversible blocking of sulfhydryl groups with thimerosal inhibited the formation of E2.K and (E2-P).Mg.ouabain but not that of the other conformations of the fluorescein-enzyme. The thimerosal-treated fluorescein-enzyme retained K+-p-nitrophenylphosphatase activity, inhibition of this activity by ouabain and ouabain binding. The unphosphorylated enzyme had low (K0.5 = 1.2 mM) and the phosphoenzyme had high affinity (K0.5 = 0.03 - 0.09 mM) for Mg2+ in the absence of nucleotides. Since low and high affinity for Mg2+ alternates as the enzyme turns over, Mg2+ may be bound and released sequentially during the catalytic cycle.  相似文献   

14.
The Mg(2+)-dependent (Na(+),K(+))ATPase maintains several cellular processes and is essential for cell excitability. In view of the importance of the enzyme activity, the interaction and binding affinities to substrates and metal ions have been studied. We determined the effect of Zinc ion (Zn(2+)) on the (Na(+),K(+))ATPase activity present in both conducting (non-innervated) and post-synaptic (innervated) membranes of electrocyte from Electrophorus electricus (L.). Zn(2+) is involved in many biological functions and is present in pre-synaptic nerve terminals. This metal, which has affinity for thiol groups, acted as a potent competitive inhibitor of (Na(+),K(+))ATPase of both membrane fractions, which were obtained by differential centrifugation of the E. electricus main electric organ homogenate. We tried to recover the enzyme activity using dithiothreitol, a reducing agent. Kinetic analysis showed that dithiothreitol acted as a non-essential non-competitive activator of (Na(+),K(+))ATPase from both membrane fractions and was able to revert the Zn(2+) inhibition at mM concentrations. In the presence of dithiothreitol, this metal behaved as a competitive inhibitor of (Na(+),K(+))ATPase in the non-innervated membrane fractions and presented a non-competitive inhibition of (Na(+),K(+))ATPase in innervated membrane fractions. This difference may be attributed to formation of a Zn-dithiothreitol complex, as well as the involvement of other binding sites for both agents. The consequences of the enzyme inhibition by Zn(2+) may be considered in regard to its neurotoxic effects.  相似文献   

15.
Semi-purified dog kidney Na+,K+-ATPase cross-linked with ovalbumin was used in batch-wise affinity chromatography for the detection of endogenous Na+,K+-ATPase inhibitor in human plasma and urine. Ammonium acetate 1 M washed off the endogenous inhibitor from the immobilized enzyme. The inhibitory activity of the eluate from hypertensive plasma and urine was significantly higher (p less than 0.0025, n = 5 and p less than 0.005, n = 6 respectively) than that of normotensive. This latter was correlated with the ability of plasma from the same subjects to compete with ouabain binding to erythrocytes. Plasma and urine extracts inhibited the activity of Na+, K+-ATPase in a dose-dependent manner as ouabain does and were shown to contain 3 or 4 active compounds by high pressure liquid chromatography. The activity of some of these compounds was lost after peptidase treatment. These data support the heterogeneity of endogenous inhibitors of Na+,K+-ATPase activity in plasma and urine.  相似文献   

16.
The abundance of Na+, K+-ATPase in cartilage is controlled by the ionic composition of the extracellular environment of chondrocytes, and specifically depends on the local concentration of polyanionic matrix proteoglycans. In this study, it was found that the plasma membrane density of Na+, K+-ATPase in isolated chondrocytes is sensitive to both ionic and osmotic changes in the extracellular environment. The upregulation observed experimentally was similar in magnitude as measured by 3H-ouabain binding, which indicates that chondrocytes respond adaptively to both ionic and osmotic stimuli. The precise mechanism for this novel mode of Na+, K+-ATPase regulation has yet to be elucidated. Physiological perturbation of the ionic and osmotic environment of chondrocytes may alter intracellular Na+ concentration and this may be one of a number of stimuli responsible for alterations to the expression and plasma membrane abundance of Na+, K+-ATPase in the cells.  相似文献   

17.
The Na,K-ATPase belongs to the P-type ATPase family of primary active cation pumps. Metal fluorides like magnesium-, beryllium-, and aluminum fluoride act as phosphate analogues and inhibit P-type ATPases by interacting with the phosphorylation site, stabilizing conformations that are analogous to specific phosphoenzyme intermediates. Cardiotonic steroids like ouabain used in the treatment of congestive heart failure and arrhythmias specifically inhibit the Na,K-ATPase, and the detailed structure of the highly conserved binding site has recently been described by the crystal structure of the shark Na,K-ATPase in a state analogous to E2·2K(+)·P(i) with ouabain bound with apparently low affinity (1). In the present work inhibition, and subsequent reactivation by high Na(+), after treatment of shark Na,K-ATPase with various metal fluorides are characterized. Half-maximal inhibition of Na,K-ATPase activity by metal fluorides is in the micromolar range. The binding of cardiotonic steroids to the metal fluoride-stabilized enzyme forms was investigated using the fluorescent ouabain derivative 9-anthroyl ouabain and compared with binding to phosphorylated enzyme. The fastest binding was to the Be-fluoride stabilized enzyme suggesting a preformed ouabain binding cavity, in accord with results for Ca-ATPase where Be-fluoride stabilizes the E2-P ground state with an open luminal ion access pathway, which in Na,K-ATPase could be a passage for ouabain. The Be-fluoride stabilized enzyme conformation closely resembles the E2-P ground state according to proteinase K cleavage. Ouabain, but not its aglycone ouabagenin, prevented reactivation of this metal fluoride form by high Na(+) demonstrating the pivotal role of the sugar moiety in closing the extracellular cation pathway.  相似文献   

18.
Munson K  Law RJ  Sachs G 《Biochemistry》2007,46(18):5398-5417
New models of the gastric H,K ATPase in the E1K and E2P states are presented as the first structures of a K+ counter-transport P2-type ATPase exhibiting ion entry and exit paths. Homology modeling was first used to generate a starting conformation from the srCa ATPase E2P form (PDB code 1wpg) that contains bound MgADP. Energy minimization of the model showed a conserved adenosine site but nonconserved polyphosphate contacts compared to the srCa ATPase. Molecular dynamics was then employed to expand the luminal entry sufficiently to allow access of the rigid K+ competitive naphthyridine inhibitor, Byk99, to its binding site within the membrane domain. The new E2P model had increased separation between transmembrane segments M3 through M8, and addition of water in this space showed not only an inhibitor entry path to the luminal vestibule but also a channel leading to the ion binding site. Addition of K+ to the hydrated channel with molecular dynamics modeling of ion movement identified a pathway for K+ from the lumen to the ion binding site to give E2K. A K+ exit path to the cytoplasm operating during the normal catalytic cycle is also proposed on the basis of an E1K homology model derived from the E12Ca2+ form of the srCa ATPase (PDB code 1su4). Autodock analyses of the new E2P model now correctly discriminate between high- and low-affinity K+ competitive inhibitors. Finally, the expanded luminal vestibule of the E2P model explains high-affinity ouabain binding in a mutant of the H,K ATPase [Qiu et al. (2005) J. Biol. Chem. 280, 32349-32355].  相似文献   

19.
Activities related to Na-K transport were measured in cell cultures of ground squirrel kidney cortex in order to compare these cells with those of intact kidney and of continuous cell lines. A microsomal preparation containing plasma membrane Na,K-ATPase from fresh kidney showed twice the activity of a similar preparation from 72-hour cultured cells. Na,K-ATPase of homogenates of 72-hour cells showed one-third to one-fourth the specific activity of that from 6-hour cultured cells. The associated K-dependent phosphatase activity also declined as a function of time in culture. The ouabain-sensitive influx of K into 6-hour cultured cells was twice as great as the K influx into 72-hour cells. The number of sites binding 3H-ouabain in intact cultured cells declined 81% on a cell protein basis between 6 and 72 hours in culture. This decline in ouabain binding sites was relatively greater than that of K influx, so that the K turnover number increased over this same time period. The decline in ouabain-sensitive K influx during culture was complementary to an increase in furosemide-sensitive K influx. Measurements of unidirectional and net K fluxes showed that there were three components of K influx into 3-day cultured cells: ouabain-sensitive Na:K exchange, furosemide-sensitive K:K exchange, and K diffusion. In the 6-hour cultures, however, there was no furosemide-sensitive K:K exchange. Thus, after three days in culture ground squirrel kidney cells lose a feature characteristic of the original parent cells (high Na,K-ATPase activity), and gain a feature common to many undifferentiated cultured cells (furosemide-sensitive K:K exchange).  相似文献   

20.
Infrared spectroscopy has been used to map substrate-protein interactions: the conformational changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding and ATPase phosphorylation were monitored using the substrate ATP and ATP analogues (2'-deoxy-ATP, 3'-deoxy-ATP, and inosine 5'-triphosphate), which were modified at specific functional groups of the substrate. Modifications to the 2'-OH, the 3'-OH, and the amino group of adenine reduce the extent of binding-induced conformational change of the ATPase, with particularly strong effects observed for the latter two. This demonstrates the structural sensitivity of the nucleotide-ATPase complex to individual interactions between nucleotide and ATPase. All groups studied are important for binding and interactions of a given ligand group with the ATPase depend on interactions of other ligand groups. Phosphorylation of the ATPase was observed for ITP and 2'-deoxy-ATP, but not for 3'-deoxy-ATP. There is no direct link between the extent of conformational change upon nucleotide binding and the rate of phosphorylation showing that the full extent of the ATP-induced conformational change is not mandatory for phosphorylation. As observed for the nucleotide-ATPase complex, the conformation of the first phosphorylated ATPase intermediate E1PCa(2) also depends on the nucleotide, indicating that ATPase states have a less uniform conformation than previously anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号