首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
2.
Interleukin-3 signals through multiple isoforms of Stat5.   总被引:31,自引:6,他引:25       下载免费PDF全文
The interleukin (IL)-3 family of cytokines mediates its numerous effects on myeloid growth and maturation by binding a family of related receptors. It has been shown recently that IL-3 induces the activation of two distinct cytoplasmic signal transducing factors (STFs) that are likely to mediate the induction of immediate early genes. In immature myeloid cells, IL-3 activates STF-IL-3a, which comprises two tyrosine-phosphorylated DNA binding proteins of 77 and 80 kDa. In mature myeloid cells, IL-3 and granulocyte-macrophage colony-stimulating factor activate STF-IL-3b, which consists of a 94 and 96 kDa tyrosine-phosphorylated DNA binding protein. Peptide sequence data obtained from the purified 77 and 80 kDa proteins (p77 and p80) indicate that they are closely related but are encoded by distinct genes. Both peptide and nucleotide sequence data demonstrate that these two proteins are the murine homologs of ovine mammary gland factor (MGF)/Stat5. The peptide data also indicate that p77 and p80 are phosphorylated on tyrosine 699, a position analogous to the tyrosine that is phosphorylated in Stat1 and Stat2 in response to interferon. Additionally, antiserum raised against bacterially expressed p77/p80 recognizes the 94 and 96 kDa protein components of STF-IL-3b, suggesting that these may be additional isoforms of Stat5. These studies indicate that the IL-3 family of ligands is able to activate multiple isoforms of the signal transducing protein Stat5.  相似文献   

3.
Enhancer role of STAT5 in CD2 activation of IFN-gamma gene expression   总被引:1,自引:0,他引:1  
IFN-gamma is an important immunoregulatory protein with tightly controlled expression in activated T and NK cells. Three potential STAT binding regions have been recognized within the IFN-gamma promoter: 1) an IL-12-mediated STAT4 binding site at -236 bp; 2) a newly identified IL-2-induced STAT5 binding element at -3.6 kb; and 3) CD2-mediated STAT1 and STAT4 binding to an intronic element in mucosal T cells. However, functional activation of these sites remains unclear. In this study we demonstrate CD2-mediated activation of the newly characterized -3.6-kb IFN-gamma STAT5 binding region. CD2 signaling of human PBMC results in activation of the -3.6-kb IFN-gamma promoter, whereas mutation of the -3.6-kb STAT5 site attenuates promoter activity. Functional activation is accompanied by STAT5A but little STAT5B nucleoprotein binding to the IFN-gamma STAT5 site, as determined by competition and supershift assays. STAT5 activation via CD2 occurs independent of IL-2. Western and FACS analysis shows increased phospho-STAT5 following CD2 signaling. AG490, a tyrosine kinase inhibitor affecting Jak proteins, inhibits CD2-mediated IFN-gamma mRNA expression, secretion, and nucleoprotein binding to the IFN-gamma STAT5 site in a dose-dependent fashion. This report is the first to describe CD2-mediated activation of STAT5 and supports STAT5 involvement in regulation of IFN-gamma expression.  相似文献   

4.
A gain-of-function mutation in STAT6   总被引:4,自引:0,他引:4  
  相似文献   

5.
Previous studies have demonstrated that Leishmania donovani attenuates STAT1-mediated signaling in macrophages; however it is not clear whether other species of Leishmania, which cause cutaneous disease, also interfere with macrophage IFN-gamma signaling. Therefore, we determined the effect of Leishmania major and Leishmania mexicana infection on STAT1-mediated IFN-gamma signaling pathway in J774A.1 and RAW264.7 macrophages. We found that both L. major and L. mexicana suppressed IFNgammaRalpha (alpha subunit of interferon gamma receptor) and IFN-gammaRbeta (beta subunit of interferon gamma receptor) expression, reduced levels of total Jak1 and Jak2, and down-regulated IFN-gamma-induced Jak1, Jak2 and STAT1 activation. The effect of L. mexicana infection on Jak1, Jak2 and STAT1 activation was more profound when compared with L. major. Although tyrosine phosphorylation of STAT1alpha was decreased in IFN-gamma stimulated macrophages infected with L. major or L. mexicana, those infected with L. mexicana showed a significant increase in phosphorylation of the dominant negative STAT1beta. These findings indicate that L. major and L. mexicana attenuate STAT1-mediated IFN-gamma signaling in macrophages. Furthermore, they also demonstrate that L. mexicana preferentially enhances tyrosine phosphorylation of dominant negative STAT1beta, which may be one of the several survival mechanisms used by this parasite to evade the host defense mechanisms.  相似文献   

6.
7.
8.
One important mechanism of cross-regulation by opposing cytokines is inhibition of signal transduction, including inhibition of Janus kinase-STAT signaling by suppressors of cytokine signaling. We investigated whether IFN-gamma, a major activator of macrophages, inhibited the activity of IL-10, an important deactivator. Preactivation of macrophages with IFN-gamma inhibited two key anti-inflammatory functions of IL-10, the suppression of cytokine production and of MHC class II expression. Gene expression profiling showed that IFN-gamma broadly suppressed the ability of IL-10 to induce or repress gene expression. Although IFN-gamma induced expression of suppressor of cytokine signaling proteins, IL-10 signal transduction was not suppressed and IL-10 activation of Janus kinases and Stat3 was preserved. Instead, IFN-gamma switched the balance of IL-10 STAT activation from Stat3 to Stat1, with concomitant activation of inflammatory gene expression. IL-10 activation of Stat1 required the simultaneous presence of IFN-gamma. These results demonstrate that IFN-gamma operates a switch that rapidly regulates STAT activation by IL-10 and alters macrophage responses to IL-10. Dynamic regulation of the activation of different STATs by the same cytokine provides a mechanism by which cells can integrate and balance signals delivered by opposing cytokines, and extends our understanding of cross-regulation by opposing cytokines to include reprogramming of signaling and alteration of function.  相似文献   

9.
Stat4 is activated in response to IL-12. Most functions of IL-12, including the induction of IFN-gamma, are compromised in the absence of Stat4. Since the precise role of Stat4 in IFN-gamma induction has not been established, experiments were conducted to examine Stat4 activation of IFN-gamma and other genes required for cytokine-induced expression of IFN-gamma. We first examined IL-12 signaling components. Basal expression of IL-12Rss1 and IL-12Rss2 is decreased in Stat4-deficient cells compared with that in control cells. However, IL-12 was still capable of inducing equivalent phosphorylation of Jak2 and Tyk2 in wild-type and Stat4-deficient activated T cells. We have further determined that other cytokine signaling pathways that induce IFN-gamma production are defective in the absence of Stat4. IL-18 induces minimal IFN-gamma production from Stat4-deficient activated T cells compared with control cells. This is due to defective IL-18 signaling, which results from the lack of IL-12-induced, and Stat4-dependent, expression of the IL-18R. Following IL-12 pretreatment to induce IL-18R, wild-type, but not Stat4-deficient, activated T cells demonstrated IL-18-induced NF-kappaB DNA-binding activity. In addition, IL-12-pretreated Stat4-deficient activated T cells have minimal IFN-gamma production followed by stimulation with IL-18 alone or in combination with IL-12 compared with control cells. Thus, Stat4 activation by IL-12 is required for the function of multiple cytokine pathways that result in induction of IFN-gamma.  相似文献   

10.
Members of the recently discovered SOCS/CIS/SSI family have been proposed as regulators of cytokine signaling, and while targets and mechanisms have been suggested for some family members, the precise role of these proteins remains to be defined. To date no SOCS proteins have been specifically implicated in interleukin-2 (IL-2) signaling in T cells. Here we report SOCS-3 expression in response to IL-2 in both T-cell lines and human peripheral blood lymphocytes. SOCS-3 protein was detectable as early as 30 min following IL-2 stimulation, while CIS was seen only at low levels after 2 h. Unlike CIS, SOCS-3 was rapidly tyrosine phosphorylated in response to IL-2. Tyrosine phosphorylation of SOCS-3 was observed upon coexpression with Jak1 and Jak2 but only weakly with Jak3. In these experiments, SOCS-3 associated with Jak1 and inhibited Jak1 phosphorylation, and this inhibition was markedly enhanced by the presence of IL-2 receptor beta chain (IL-2Rbeta). Moreover, following IL-2 stimulation of T cells, SOCS-3 was able to interact with the IL-2 receptor complex, and in particular tyrosine phosphorylated Jak1 and IL-2Rbeta. Additionally, in lymphocytes expressing SOCS-3 but not CIS, IL-2-induced tyrosine phosphorylation of STAT5b was markedly reduced, while there was only a weak effect on IL-3-mediated STAT5b tyrosine phosphorylation. Finally, proliferation induced by both IL-2- and IL-3 was significantly inhibited in the presence of SOCS-3. The findings suggest that when SOCS-3 is rapidly induced by IL-2 in T cells, it acts to inhibit IL-2 responses in a classical negative feedback loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号