首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leg stiffness primarily depends on ankle stiffness during human hopping   总被引:1,自引:0,他引:1  
When humans hop in place or run forward, they adjust leg stiffness to accommodate changes in stride frequency or surface stiffness. The goal of the present study was to determine the mechanisms by which humans adjust leg stiffness during hopping in place. Five subjects hopped in place at 2.2 Hz while we collected force platform and kinematic data. Each subject completed trials in which they hopped to whatever height they chose ("preferred height hopping") and trials in which they hopped as high as possible ("maximum height hopping"). Leg stiffness was approximately twice as great for maximum height hopping as for preferred height hopping. Ankle torsional stiffness was 1.9-times greater while knee torsional stiffness was 1.7-times greater in maximum height hopping than in preferred height hopping. We used a computer simulation to examine the sensitivity of leg stiffness to the observed changes in ankle and knee stiffness. Our model consisted of four segments (foot, shank, thigh, head-arms-trunk) interconnected by three torsional springs (ankle, knee, hip). In the model, increasing ankle stiffness by 1.9-fold, as observed in the subjects, caused leg stiffness to increase by 2.0-fold. Increasing knee stiffness by 1.7-fold had virtually no effect on leg stiffness. Thus, we conclude that the primary mechanism for leg stiffness adjustment is the adjustment of ankle stiffness.  相似文献   

2.
Humans hopping and running on elastic and damped surfaces maintain similar center-of-mass dynamics by adjusting stance leg mechanics. We tested the hypothesis that the leg transitions from acting like an energy-conserving spring on elastic surfaces to a power-producing actuator on damped surfaces during hopping due to changes in ankle mechanics. To test this hypothesis, we collected surface electromyography, video kinematics, and ground reaction force while eight male subjects (body mass: 76.2 +/- 1.7 kg) hopped in place on a range of damped surfaces. On the most damped surface, most of the mechanical work done by the leg appeared at the ankle (52%), whereas 23 and 25% appeared at the knee and hip, respectively. Hoppers extended all three joints during takeoff further than they flexed during landing and thereby did more net positive work on more heavily damped surfaces. Also, all three joints reached peak flexion sooner after touchdown on more heavily damped surfaces. Consequently, peak moment occurred during joint extension rather than at peak flexion as on elastic surfaces. These strategies caused the positive work during extension to exceed the negative work during flexion to a greater extent on more heavily damped surfaces. At the muscle level, surface EMG increased by 50-440% in ankle and knee extensors as surface damping increased to compensate for greater surface energy dissipation. Our findings, and those of previous studies of hopping on elastic surfaces, show that the ankle joint is the key determinant of both springlike and actuator-like leg mechanics during hopping in place.  相似文献   

3.
The purpose of the present study was to determine how humans adjust leg stiffness over a range of hopping frequencies. Ten male subjects performed in place hopping on two legs, at three frequencies (1.5, 2.2, and 3.0 Hz). Leg stiffness, joint stiffness and touchdown joint angles were calculated from kinetic and/or kinematics data. Electromyographic activity (EMG) was recorded from six leg muscles. Leg stiffness increased with an increase in hopping frequency. Hip and knee stiffnesses were significantly greater at 3.0 Hz than at 1.5 Hz. There was no significant difference in ankle stiffness among the three hopping frequencies. Although there were significant differences in EMG activity among the three hopping frequencies, the largest was the 1.5 Hz, followed by the 2.2 Hz and then 3.0 Hz. The subjects landed with a straighter leg (both hip and knee were extended more) with increased hopping frequency. These results suggest that over the range of hopping frequencies we evaluated, humans adjust leg stiffness by altering hip and knee stiffness. This is accomplished by extending the touchdown joint angles rather than by altering neural activity.  相似文献   

4.
Due to the well-described spring-mass dynamics of bouncing gaits, human hopping is a tractable model for elucidating basic neuromuscular compensation principles. We tested whether subjects would employ a multi-joint or single-joint response to stabilize leg stiffness while wearing a spring-loaded ankle-foot orthosis (AFO) that applied localized resistive and assistive torques to the ankle. We analyzed kinematics and kinetics data from nine subjects hopping in place on one leg, at three frequencies (2.2, 2.4, and 2.8Hz) and three orthosis conditions (freely articulating AFO, AFO with plantarflexion resistance, and AFO with plantarflexion assistance). Leg stiffness was invariant across AFO conditions, however, compensation strategy depended upon the nature of the applied load. Biological ankle stiffness increased in response to a resistive load at twice the rate that it decreased with an assitive load. Ankle adjustments alone fully compensated for an assistive load with no net change in combined (biological plus applied) total ankle stiffness (p > or =0.133). In contrast, a resistive load resulted in a 7.4-9.0% increase in total ankle stiffness across frequencies and a concomitant 10-15% increase in knee joint stiffness at each frequency (p< or =0.037). The increased knee joint stiffness in response to resistive ankle load allowed subjects to maintain a more flexed knee at mid-stance, which attenuated the effect of the increased total ankle joint stiffness to preserve leg stiffness and whole limb biomechanical performance. Our findings suggest humans maintain invariant leg stiffness in bouncing gaits through different intralimb compensation strategies that are specific to the nature of the joint loading.  相似文献   

5.
When humans hop or run on different surfaces, they adjust their effective leg stiffness to offset changes in surface stiffness. As a result, the overall stiffness of the leg-surface series combination remains independent of surface stiffness. The purpose of this study was to determine whether humans make a similar adjustment when springs are placed in parallel with the leg via a lower limb orthosis. We studied seven human subjects hopping in place on one leg while wearing an ankle-foot orthosis. We used an ankle-foot orthosis because the ankle joint is primarily responsible for leg stiffness during hopping. A spring was added to the ankle-foot orthosis so that it increased orthosis stiffness by providing plantar flexor torque during ankle dorsiflexion. We hypothesized that subjects would decrease their biological ankle stiffness when the spring was added to the orthosis, keeping total ankle stiffness constant. We collected kinematic, kinetic, and electromyographic data during hopping with and without the spring on the orthosis. We found that total ankle stiffness and leg stiffness did not change across the two orthosis conditions (ANOVA, P > 0.05). This was possible because subjects decreased their biological ankle stiffness to offset the orthosis spring stiffness (P < 0.0001). The reduction in biological ankle stiffness was accompanied by decreases in soleus, medial gastrocnemius, and lateral gastrocnemius muscle activation (P < 0.0002). These results suggest that an elastic exoskeleton might improve human running performance by reducing muscle recruitment.  相似文献   

6.
Understanding the leg and joint stiffness during human movement would provide important information that could be utilized for evaluating sports performance and for injury prevention. In the present study, we examined the determinants of the difference in the leg stiffness between the endurance-trained and power-trained athletes. Seven distance runners and seven power-trained athletes performed in-place hopping, matching metronome beats at 3.0 and 1.5Hz. Leg and joint stiffness were calculated from kinetic and kinematics data. Electromyographic activity (EMG) was recorded from six leg muscles. At both hopping frequencies, the power-trained athletes demonstrated significantly higher leg stiffness than the distance runners. Hip, knee, and ankle joints were analyzed for stiffness and touchdown angles. Ankle stiffness was significantly greater in the power-trained athletes than the distance runners at 3.0Hz as was knee stiffness at 1.5Hz. There was no significant difference in touchdown angle between the DR and PT groups at either hopping frequencies. When significant difference in EMG activity existed between two groups, it was always greater in the distance runners than the power-trained athletes. These results suggest that (1) the difference in leg stiffness between endurance-trained and power-trained athletes is best attributed to increased joint stiffness, and (2) the difference in joint stiffness between the two groups may be attributed to a lack of similarity in the intrinsic stiffness of the muscle-tendon complex rather than in altered neural activity.  相似文献   

7.
Understanding stiffness of the lower extremities during human movement may provide important information for developing more effective training methods during sports activities. It has been reported that leg stiffness during submaximal hopping depends primarily on ankle stiffness, but the way stiffness is regulated in maximal hopping is unknown. The goal of this study was to examine the hypothesis that knee stiffness is a major determinant of leg stiffness during the maximal hopping. Ten well-trained male athletes performed two-legged hopping in place with a maximal effort. We determined leg and joint stiffness of the hip, knee, and ankle from kinetic and kinematic data. Knee stiffness was significantly higher than ankle and hip stiffness. Further, the regression model revealed that only knee stiffness was significantly correlated with leg stiffness. The results of the present study suggest that the knee stiffness, rather than those of the ankle or hip, is the major determinant of leg stiffness during maximal hopping.  相似文献   

8.
Humans running and hopping maintain similar center-of-mass motions, despite large changes in surface stiffness and damping. The goal of this study was to determine the contributions of anticipation and reaction when human hoppers encounter surprise, expected, and random changes from a soft elastic surface (27 kN/m) to a hard surface (411 kN/m). Subjects encountered the expected hard surface on every fourth hop and the random hard surface on an average of 25% of the hops in a trial. When hoppers on a soft surface were surprised by a hard surface, the ankle and knee joints were forced into greater flexion by passive interaction with the hard surface. Within 52 ms after subjects landed on the surprise hard surface, joint flexion increased, and the legs became less stiff than on the soft surface. These mechanical changes occurred before electromyography (EMG) first changed 68-188 ms after landing. Due to the fast mechanical reaction to the surprise hard surface, center-of-mass displacement and average leg stiffness were the same as on expected and random hard surfaces. This similarity is striking because subjects anticipated the expected and random hard surfaces by landing with their knees more flexed. Subjects also anticipated the expected hard surface by increasing the level of EMG by 24-76% during the 50 ms before landing. These results show that passive mechanisms alter leg stiffness for unexpected surface changes before muscle EMG changes and may be critical for adjustments to variable terrain encountered during locomotion in the natural world.  相似文献   

9.
Changes in fascicle length and tension of the soleus (SOL) muscle have been observed in humans using B-mode ultrasound to examine the knee from different angles. An alternative technique of assessing muscle and tendon stiffness is myometry, which is non-invasive, accessible, and easy to use. This study aimed to estimate the compressive stiffness of the distal SOL and Achilles tendon (AT) using myometry in various knee and ankle joint positions. Twenty-six healthy young males were recruited. The Myoton-PRO device was used to measure the compressive stiffness of the distal SOL and AT in the dominant leg. The knee was measured in two positions (90° of flexion and 0° of flexion) and the ankle joint in three positions (10° of dorsiflexion, neutral position, and 30° of plantar flexion) in random order. A three-way repeated-measures ANOVA test was performed. Significant interactions were found for structure × ankle position, structure × knee position, and structure × ankle position × knee position (p < 0.05). The AT and SOL showed significant increases in compressive stiffness with knee extension over knee flexion for all tested ankle positions (p < 0.05). Changes in stiffness relating to knee positioning were larger in the SOL than in the AT (p < 0.05). These results indicate that knee extension increases the compressive stiffness of the distal SOL and AT under various ankle joint positions, with a greater degree of change observed for the SOL. This study highlights the relevance of knee position in passive stiffness of the SOL and AT.  相似文献   

10.
Mammals use the elastic components in their legs (principally tendons, ligaments, and muscles) to run economically, while maintaining consistent support mechanics across various surfaces. To examine how leg stiffness and metabolic cost are affected by changes in substrate stiffness, we built experimental platforms with adjustable stiffness to fit on a force-plate-fitted treadmill. Eight male subjects [mean body mass: 74.4 +/- 7.1 (SD) kg; leg length: 0.96 +/- 0.05 m] ran at 3.7 m/s over five different surface stiffnesses (75.4, 97.5, 216.8, 454.2, and 945.7 kN/m). Metabolic, ground-reaction force, and kinematic data were collected. The 12.5-fold decrease in surface stiffness resulted in a 12% decrease in the runner's metabolic rate and a 29% increase in their leg stiffness. The runner's support mechanics remained essentially unchanged. These results indicate that surface stiffness affects running economy without affecting running support mechanics. We postulate that an increased energy rebound from the compliant surfaces studied contributes to the enhanced running economy.  相似文献   

11.
The increased number of women participating in sports has led to a higher knee injury rate in women compared with men. Among these injuries, those occurring to the ACL are commonly observed during landing maneuvers. The purpose of this study was to determine gender differences in landing strategies during unilateral and bilateral landings. Sixteen male and 17 female recreational athletes were recruited to perform unilateral and bilateral landings from a raised platform, scaled to match their individual jumping abilities. Three-dimensional kinematics and kinetics of the dominant leg were calculated during the landing phase and reported as initial ground contact angle, ranges of motion (ROM) and peak moments. Lower extremity energy absorption was also calculated for the duration of the landing phase. Results showed that gender differences were only observed in sagittal plane hip and knee ROM, potentially due to the use of a relative drop height versus the commonly used absolute drop height. Unilateral landings were characterized by significant differences in hip and knee kinematics that have been linked to increased injury risk and would best be classified as "stiff" landings. The ankle musculature was used more for impact absorption during unilateral landing, which required increased joint extension at touchdown and may increase injury risk during an unbalanced landing. In addition, there was only an 11% increase in total energy absorption during unilateral landings, suggesting that there was a substantial amount of passive energy transfer during unilateral landings.  相似文献   

12.
The goal of this study was to examine the influence of changes in foot positioning at touch-down on ankle sprain occurrence. Muscle model driven computer simulations of 10 subjects performing the landing phase of a side-shuffle movement were performed. The relative subtalar joint and talocural joint angles at touchdown were varied, and each subject-specific simulation was exposed to a set of perturbed floor conditions. The touchdown subtalar joint angle was not found to have a considerable influence on sprain occurrence, while increased touchdown plantar flexion caused increased ankle sprain occurrences. Increased touchdown plantar flexion may be the mechanism which causes ankles with a history of ankle sprains to have an increased susceptibility to subsequent sprains. This finding may also reveal a mechanism by which taping of a sprained ankle or the application of an ankle brace leads to decreased ankle sprain susceptibility.  相似文献   

13.
The force-length-relation (F-l-r) is an important property of skeletal muscle to characterise its function, whereas for in vivo human muscles, torque-angle relationships (T-a-r) represent the maximum muscular capacity as a function of joint angle. However, since in vivo force/torque-length data is only available for rotational single-joint movements the purpose of the present study was to identify torque-angle-relationships for multi-joint leg extension. Therefore, inverse dynamics served for calculation of ankle and knee joint torques of 18 male subjects when performing maximum voluntary isometric contractions in a seated leg press. Measurements in increments of 10° knee angle from 30° to 100° knee flexion resulted in eight discrete angle configurations of hip, knee and ankle joints. For the knee joint we found an ascending-descending T-a-r with a maximum torque of 289.5° ± 43.3 Nm, which closely matches literature data from rotational knee extension. In comparison to literature we observed a shift of optimum knee angle towards knee extension. In contrast, the T-a-r of the ankle joint vastly differed from relationships obtained for isolated plantar flexion. For the ankle T-a-r derived from multi-joint leg extension subjects operated over different sections of the force-length curve, but the ankle T-a-r derived from isolated joint efforts was over the ascending limb for all subjects. Moreover, mean maximum torque of 234.7 ± 56.6 Nm exceeded maximal strength of isolated plantar flexion (185.7 ± 27.8 Nm). From these findings we conclude that muscle function between isolated and more physiological multi-joint tasks differs. This should be considered for ergonomic and sports optimisation as well as for modelling and simulation of human movement.  相似文献   

14.
Although leg spring stiffness represents active muscular recruitment of the lower extremity during dynamic tasks such as hopping and running, the joint-specific characteristics comprising the damping portion of this measure, leg impedance, are uncertain. The purpose of this investigation was to assess the relationship between leg impedance and energy absorption at the ankle, knee, and hip during early (impact) and late (stabilization) phases of landing. Twenty highly trained female dancers (age = 20.3 +/- 1.4 years, height = 163.7 +/- 6.0 cm, mass = 62.1 +/- 8.1 kg) were instrumented for biomechanical analysis. Subjects performed three sets of double-leg landings from under preferred, stiff, and soft landing conditions. A stepwise linear regression analysis revealed that ankle and knee energy absorption at impact, and knee and hip energy absorption during the stabilization phases of landing explained 75.5% of the variance in leg impedance. The primary predictor of leg impedance was knee energy absorption during the stabilization phase, independently accounting for 55% of the variance. Future validation studies applying this regression model to other groups of individuals are warranted.  相似文献   

15.
A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, kcr, which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion.  相似文献   

16.
AimThe aim of the present study was to evaluate reactive hops under systematically modified acceleration conditions. It was hypothesized that a high preactivity of the leg extensors and phase-specific adjustments of the leg muscle activation would compensate the alterations caused by the various acceleration levels in order to maintain a high leg stiffness, thus enabling the jumper to perform truly reactive jumps with short ground contact times despite the unaccustomed acceleration conditions.MethodsGround reaction forces (GRF), kinematic and electromyographic data of 20 healthy subjects were recorded during reactive hopping in a special sledge jump system for seven different acceleration levels: three acceleration levels with lower than normal gravity (0.7g, 0.8g, 0.9g), one with gravitational acceleration (1g) and three with higher acceleration (1.1g, 1.2g, 1.3g).ResultsThe increase of the acceleration from 0.7g to 1.3g had no significant effect on the preactivity of the leg extensors, the leg stiffness and the rate of force development. However, it resulted in increased peak GRF (+15%), longer ground contact time (+10%) and increased angular excursion at the ankle and knee joints (+3°).DiscussionThroughout a wide acceleration range, the subjects were able to maintain a high leg stiffness and perform reactive hops by keeping the preactivity constantly high and adjusting the muscle activity in the later phases. In consequence, it can be concluded that the neuromuscular system can cope with different acceleration levels, at least in the acceleration range used in this study.  相似文献   

17.
To characterize the electromyographic (EMG) activity, ground reaction forces, and kinematics were used in the running jump with different takeoff angles. Two male long jumpers volunteered to perform running jumps at different approach speeds by varying the number of steps (from 3 to 9) in the run-up. Subject TM achieved a greater vertical velocity of the center of gravity (CG) at takeoff for all approach distances. This jumping strategy was associated with greater backward trunk lean at touchdown and takeoff, a lesser range of motion for the thigh during the support phase, more extended knee and ankle angles at touchdown, and a more flexed knee angle at takeoff. Accompanying these differences in kinematics, TM experienced greater braking impulses and lesser propulsion impulses for the forward-backward component of the ground reaction force. Furthermore, TM activated mainly the rectus femoris, vastus medialis, lateral gastrocnemius, and tibialis anterior, while if rarely activated the biceps femoris from just before contact to roughly the first two-thirds of the support phase. These results indicate that TM used a greater takeoff angle in the running jump because he enabled and sustained a greater blocking effect via the coordination patterns of the muscles relative to the hip, knee, and ankle joints. These findings also suggest that the muscle activities recorded in the present experiment are reflected in kinematics and kinetics. Further, the possible influence of these muscle activities on joint movements in the takeoff leg, and their effect on the vertical and/or horizontal velocity of the jump are discussed.  相似文献   

18.
Human runners adjust the stiffness of their stance leg to accommodate surface stiffness during steady state running. This adjustment allows runners to maintain similar center of mass movement (e.g., ground contact time and stride frequency) regardless of surface stiffness. When runners encounter abrupt transitions in the running surface, they must either make a rapid adjustment or allow the change in the surface stiffness to disrupt their running mechanics. Our goal was to determine how quickly runners adjust leg stiffness when they encounter an abrupt but expected change in surface stiffness that they have encountered previously. Six human subjects ran at 3 m s(-1) on a rubber track with two types of rubber surfaces: a compliant "soft" surface (ksurf = 21.3 kN m(-1) and a non-compliant "hard" surface (ksurf = 533 kN m(-1). We found that runners completely adjusted leg stiffness for their first step on the new surface after the transition. For example, runners decreased leg stiffness by 29% between the last step on the soft surface and the first step on the hard surface (from 10.7 kN m(-1) to 7.6 kN m(-1), respectively). As a result, the vertical displacement of the center of mass during stance ( approximately 7 cm) did not change at the transition despite a reduction in surface compression from 6 cm to less than 0.25 cm. By rapidly adjusting leg stiffness, each runner made a smooth transition between surfaces so that the path of the center of mass was unaffected by the change in surface stiffness.  相似文献   

19.
Jumping on an elastic surface produces a number of sensory and motor adjustments. This effect caused by jumping on the trampoline has been called “trampoline aftereffect”. The objective of the present study was to investigate the neuromuscular response related with this effect. A group of 15 subjects took part in an experimental session, where simultaneous biomechanical and electromyographic (EMG) recordings were performed during the execution of maximal countermovement jumps (CMJs) before and after jumping on an elastic surface. We assessed motor performance (leg stiffness, jump height, peak force, vertical motion of center of mass and stored and returned energy) and EMG activation patterns of the leg muscles. The results showed a significant increase (p ? 0.05) of the RMS EMG of knee extensors during the eccentric phase of the jump performed immediately after the exposure phase to the elastic surface (CMJ1), and a significant increase (p ? 0.05) in the levels of co-activation of the muscles crossing the ankle joint during the concentric phase of the same jump. Results related with motor performance of CMJ1 showed a significant increase in the leg stiffness (p ? 0.01) due to a lower vertical motion of center of mass (CoM) (p ? 0.005), a significant decrease in jump height (p ? 0.01), and a significantly smaller stored and returned energy (p ? 0.01). The changes found during the execution of CMJ1 may result from a mismatch between sensory feedback and the efferent copy.  相似文献   

20.
Interaction of leg stiffness and surface stiffness during human hopping   总被引:3,自引:0,他引:3  
Ferris, Daniel P., and Claire T. Farley. Interaction ofleg stiffness and surface stiffness during human hopping.J. Appl.Physiol. 82(1): 15-22, 1997.When mammals run,the overall musculoskeletal system behaves as a single linear "legspring." We used force platform and kinematic measurements todetermine whether leg spring stiffness(kleg) isadjusted to accommodate changes in surface stiffness(ksurf) whenhumans hop in place, a good experimental model for examiningadjustments tokleg in bouncinggaits. We found thatkleg was greatlyincreased to accommodate surfaces of lower stiffnesses. The seriescombination ofkleg andksurf[total stiffness(ktot)]was independent ofksurf at a givenhopping frequency. For example, when humans hopped at a frequency of 2 Hz, they tripled theirkleg on the leaststiff surface(ksurf = 26.1 kN/m; kleg = 53.3 kN/m) compared with the most stiff surface(ksurf = 35,000 kN/m; kleg = 17.8 kN/m). Values forktot were notsignificantly different on the least stiff surface (16.7 kN/m) and themost stiff surface (17.8 kN/m). Because of thekleg adjustment,many aspects of the hopping mechanics (e.g., ground-contact time andcenter of mass vertical displacement) remained remarkably similardespite a >1,000-fold change inksurf. This studyprovides insight into howkleg adjustmentscan allow similar locomotion mechanics on the variety of terrainsencountered by runners in the natural world.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号