首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
    
Sexual conflict can drive rapid intersexual arms races, and lead to pronounced sexual dimorphism. Such dimorphism is frequent in diving beetles, where males typically possess expanded front and middle tarsi, supplied with adhesive setae to grasp females during mating, and females often have rough dorsal surfaces which hinder male attachment. In a number of species, females are dimorphic, being either smooth and male-like, or heavily sculptured dorsally. Smooth and sculptured females often have distinct biogeographies, and may be expected to be associated with specific counter-adaptations in males. The European diving beetle, Hydroporus memnonius Nicolai, includes a smooth male-like female, and a matt morph, var. castaneus Aubé, which are largely allopatric in distribution. We show that the two morphs differ in the density and intensity of their surface microreticulation, and that matt females are associated with morphologically distinct males, which have developed specific countermeasures on their tarsi, including a greater number of large adhesive setae, individually larger in area. Such males are expected to be more successful in pairing with both matt and shining females, and it is suggested that a process of population replacement, partly driven by sexual interactions, may occur where the two forms overlap in range.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 685–697.  相似文献   

2.
    
The complex, species-specific foreleg armature in males of the genus Themira (Diptera: Sepsidae) provides an ideal system for testing competing hypotheses for the evolution of sexually dimorphic character divergence. In sepsid flies, the male holds onto the female by clasping her wing base with his modified forelegs. In the present study, we document the male leg and the female wing morphology using scanning electron microscopy and confocal microscopy. We use a phylogenetic tree for Themira to reconstruct male foreleg and female wing evolution and demonstrate that the male legs have evolved elaborate structures with little or no corresponding changes in wing morphology. This lack of interspecific variation in female wings is not in agreement with the hypothesis of a morphological 'evolutionary arms race' between males and females. However, there is also no evidence for sex-specific wing differences in sensory organs on the wing base that may explain how females could assess males according to Eberhard's 'cryptic female choice' hypothesis. Finally, our study reveals the function of several novel morphological clasping structures and documents that the male foreleg characters in Themira are highly homoplastic. Male forelegs in two clades evolve considerably faster than in other species or clades. These two clades include Themira superba and Themira leachi , species that have some of the most dramatically modified forelegs known in Diptera.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 227–238.  相似文献   

3.
Nephilid spiders are known for gigantic females and tiny males. Such extreme sexual dimorphism and male-biased sex ratios result in fierce male–male competition for mates. Intense sperm competition may be responsible for behaviors such as mate guarding, mate binding, opportunistic mating, genital mutilation, mating plugs and male castration (eunuchs). We studied the mating biology of two phylogenetically, behaviorally and morphologically distinct south-east Asian nephilid spider species ( Herennia multipuncta, Nephila pilipes ) in nature and in the laboratory. Specifically, we established the frequencies and effectiveness of plugging (a plug is part of the male copulatory organ), and tested for male and female copulatory organ reuse. Both in nature and in the laboratory, plug frequencies were higher in H. multipuncta (75–80% females plugged) compared with N. pilipes (45–47.4%), but the differences were not significant. Plugs were single and effective (no remating) in H. multipuncta but multiple and ineffective (remating possible) in N. pilipes . In Herennia , the males plugged when the female was aggressive and in Nephila plugging was more likely when mating with previously mated and larger females. Further differences in sexual biology are complete palpal removal and higher sexual aggressiveness in Herennia (sexual cannibalism recorded for the first time), and mate binding in Nephila . Thus, we propose the following evolutionary hypothesis: nephilid plugging was ancestrally successful and enabled males to monopolize females, but plugging became ineffective in the phylogenetically derived Nephila . If the evolution of nephilid sexual mechanisms is driven by sexual conflict, then the male mechanism to monopolize females prevailed in a part of the phylogeny, but the female resistance to evade monopolization ultimately won the arms race.  相似文献   

4.
    
Conflicts over mating decisions characterize the sexual behaviour of many insects, in particular when males encounter females that already carry enough sperm to fertilize their eggs, since a mating often will inflict greater costs than benefits upon females. Therefore, coevolutionary models predict adaptation and counter-adaptation by the sexes in a battle to control the outcome of sexual encounters. A phylogenetic analysis was performed on patterns of sexual dimorphism and mating systems within water striders (Hemiptera, Gerridae). Phylogenetic effects or 'constraints' have significantly shaped patterns of sexual dimorphism in female/ male size ratios, legs and genitalia of males, and the structure of the female abdomen. Males of ancestral gerrids were probably slightly smaller than conspecific females, had powerful fore legs adapted to grasp the female's thorax during mating, and had clasping genitalic structures suited to grasp or pinch the female posteriorly. Most gerrids have a female/male size ratio between 1.05 and 1.14, but more pronounced sexual size ratios (above 1.25) have independently evolved several times in the family, usually in association with extended post-copulatory mate guarding. The comparative, phylogenetic analysis suggests coevolution of female anticlasper and male clasping devices for the clade comprising the subfamilies Cylindrostethinae, Ptilomerinae, and Halobatinae while female anticlasper devices have evolved in the absence of male clasping genitalia in the Gerrinae. The ancestral and most common mating system in gerrids is 'scramble competition polygyny' from which has evolved 'resource defence polygyny' at least four times independently of each other. The phylogenetic effects on patterns of mating behaviour are much less obvious, as exemplified by the large amount of interspecific variation in some genera.  相似文献   

5.
Conflict between the sexes over mating decision may result in antagonistic coevolution in structures that increase control over copulation. In Aquarius paludum both females and males have long abdominal spines. We tested the hypothesis that abdominal spines increase female ability to resist male mating attempts and reduce the costs of mating in A. paludum. We manipulated female spine length and observed female mating and egg-production rate in two different studies. We found that females with intact spines succeeded to reject male mating attempt more often than females with removed spines. Intact females also mated less often than females with removed or shortened spines. Male presence and mating rate increased female egg number. Our results thus support the hypothesis that abdominal spines help female to reject male mating attempts but contrary to predictions, we found that A. paludum females somehow benefit from multiple matings in spite of the sexual conflict.  相似文献   

6.
  总被引:4,自引:0,他引:4  
Male diving beetles of the subfamily Dytiscinae possess tarsi with adhesive discs that they strike on the female dorsum during mating interactions. Females of many species are dimorphic, being either smooth or structured dorsally. Darwin suggested the female structures were an aid for the male but in this study we investigate these characteristics in the light of sexual conflicts. The intraspecific variation in the numbers and size distribution of male tarsal discs, and in body measurements were recorded for three dytiscine species, all with dimorphic females. The number of protarsal discs in the two Dytiscus species varied much more than previously reported. In addition, only a small part of the variation could be explained by body size. In Graphoderus we found highly significant differences in male secondary sexual characters among populations. A multivariate analysis significantly correlated male secondary sexual characters with the proportion of granulate females in the populations. These observations are consistent with the theory of arms races and female counter adaptations. Covariation between male and female characters is predicted from a framework of sexual conflict over mating rate. At the same time our study gives a new perspective on the function of dytiscine female dorsal irregularities debated ever since Darwin.  相似文献   

7.
    
The development of secondary sexual characters, the petasma, and thelycum growth were studied in Xiphopenaeus kroyeri. In adult females, the thelycum is a single plate and its anterolateral portion is characterized by a reduced hood. The aperture resembles a transverse ridge. In immature stages, the ridge has a space between the plates, which becomes narrower as it reaches the end of development. The female gonopore is ‘comma’ shaped. In adult males, the endopods of the petasma are linked at the dorsomedial margin by a large quantity of cincinnuli. In juveniles, cincinnuli gradually increase in number until they join both endopods. At the end of development the petasma is T-shaped. The male gonopore is C-shaped. The relative growth of the petasma total length versus juvenile body length showed a highly positive allometry, whereas in adults the growth was isometric. For the relationship carapace length versus thelycum width, the juvenile phase of females is characterized by an isometry and the adult phase by a negative allometry.  相似文献   

8.
  总被引:5,自引:0,他引:5  
Sexual dimorphism is widespread in lizards, with the most consistently dimorphic traits being head size (males have larger heads) and trunk length (the distance between the front and hind legs is greater in females). These dimorphisms have generally been interpreted as follows: (1) large heads in males evolve through male-male rivalry (sexual selection); and (2) larger interlimb lengths in females provide space for more eggs (fecundity selection). In an Australian lizard (the snow skink, Niveoscincus microlepidotus), we found no evidence for ongoing selection on head size. Trunk length, however, was under positive fecundity selection in females and under negative sexual selection in males. Thus, fecundity selection and sexual selection work in concert to drive the evolution of sexual dimorphism in trunk length in snow skinks.  相似文献   

9.
  总被引:5,自引:0,他引:5  
Sexually antagonistic coevolution may be an important force in the evolution of sexual dimorphism. We undertake a comparative study of correlated evolution of male and female morphologies in a clade of 15 water strider species in the genus Gerris (Heteroptera: Gerridae). Earlier studies have shown that superfluous matings impose costs on females, including increased energetic expenditure and predation risk, and females therefore resist males with premating struggles. Males of some species possess grasping structures and females of some species exhibit distinct antigrasping structures, which are used to further the interests of each sex during these premating struggles. We use this understanding, combined with coevolutionary theory, to derive a series of a priori predictions concerning both the types of traits in the two sexes that are expected to coevolve and the coevolutionary dynamics of these traits expected under sexually antagonistic coevolution. We then assess the actual pattern of correlated evolution in this clade with new morphometric methods combined with standard comparative techniques. The results were in agreement with the a priori predictions. The level of armament (different abdominal structures in the two sexes) was closely correlated between the sexes across species. Males are well adapted to grasping females in species in which females are well adapted to thwart harassing males and vice versa. Furthermore, our comparative analyses supports the prediction that correlated evolution of armament in the two sexes should be both rapid and bidirectional.  相似文献   

10.
  总被引:2,自引:0,他引:2  
Sexual dimorphism in size is common in birds. Males are usually larger than females, although in some taxa reversed size dimorphism (RSD) predominates. Whilst direct dimorphism is attributed to sexual selection in males giving greater reproductive access to females, the evolutionary causes of RSD are still unclear. Four different hypotheses could explain the evolution of RSD in monogamous birds: (1) The ‘energy storing’ hypothesis suggests that larger females could accumulate more reserves at wintering or refuelling areas to enable an earlier start to egg laying. (2) According to the ‘incubation ability’ hypothesis, RSD has evolved because large females can incubate more efficiently than small ones. (3) The ‘parental role division’ hypothesis suggests that RSD in monogamous waders has evolved in species with parental role division and uniparental male care of the chicks. It is based on the assumption that small male size facilitates food acquisition in terrestrial habitats where chick rearing takes place and that larger females can accumulate more reserves for egg laying in coastal sites. (3) The ‘display agility’ hypothesis suggests that small males perform better in acrobatic displays presumably involved in mate choice and so RSD may have evolved due to female preference for agile males. I tested these hypotheses in monogamous waders using several comparative methods. Given the current knowledge of the phylogeny of this group, the evolutionary history of waders seems only compatible with the hypothesis that RSD has evolved as an adaptation for increasing display performance in males. In addition, the analysis of wing shape showed that males of species with acrobatic flight displays had wings with higher aspect ratio (wing span/2wing area) than non-acrobatic species, which probably increases flight manoeuvrability during acrobatic displays. In species with acrobatic displays males also had a higher aspect ratio than females although no sexual difference was found in non-acrobatic species. These results suggest that acrobatic flight displays could have produced changes in the morphology of some species and suggest the existence of selection favouring higher manoeuvrability in species with acrobatic flight displays. This supports the validity of the mechanisms proposed by the ‘display agility’ hypothesis to explain the evolution of RSD in waders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号