首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Among the four major bilaterian clades, Deuterostomia, Acoelomorpha, Ecdysozoa, and Lophotrochozoa, the latter shows an astonishing diversity of bodyplans. While the largest lophotrochozoan assemblage, the Spiralia, which at least comprises Annelida, Mollusca, Entoprocta, Platyhelminthes, and Nemertea, show a spiral cleavage pattern, Ectoprocta, Brachiopoda and Phoronida (the Lophophorata) cleave radially. Despite a vast amount of recent molecular phylogenetic analyses, the interrelationships of lophotrochozoan phyla remain largely unresolved. Thereby, Entoprocta play a key role, because they have frequently been assigned to the Ectoprocta, despite their differently cleaving embryos. However, developmental data on entoprocts employing modern methods are virtually non-existent and the data available rely exclusively on sketch drawings, thus calling for thorough re-investigation.

Results

By applying fluorescence staining in combination with confocal microscopy and 3D-imaging techniques, we analyzed early embryonic development of a basal loxosomatid entoproct. We found that cleavage is asynchronous, equal, and spiral. An apical rosette, typical for most spiralian embryos, is formed. We also identified two cross-like cellular arrangements that bear similarities to both, a "molluscan-like" as well as an "annelid-like" cross, respectively.

Conclusions

A broad comparison of cleavage types and apical cross patterns across Lophotrochozoa shows high plasticity of these character sets and we therefore argue that these developmental traits should be treated and interpreted carefully when used for phylogenetic inferences.  相似文献   

2.
SSU nrDNA studies of two representatives of the lichenicolous genus Phacopsis revealed that they belong to the family Parmeliaceae (Lecanorales) and therefore represent lichenicolous lichens with an endokapylic thallus. Because they are the only lichenicolous taxa within this family, it is suggested that their transition from a foliose and/or fruticose precursor lichen might have been due to a unique (or rare) evolutionary one step event(s). Phylogenetic analyses of the ITS nrDNA of the type species of Phacopsis (P. vulpina) and Nesolechia (N. oxyspora = P. oxyspora) could neither confirm nor reject a monophyletic origin of these two Parmeliacean genera, as previously implied by their synonymization. However, it is considered premature to draw nomenclatorial consequences.  相似文献   

3.
Abstract Dictyoptera, comprising Blattaria, Isoptera, and Mantodea, are diverse in appearance and life history, and are strongly supported as monophyletic. We downloaded COII, 16S, 18S, and 28S sequences of 39 dictyopteran species from GenBank. Ribosomal RNA sequences were aligned manually with reference to secondary structure. We included morphological data (maximum of 175 characters) for 12 of these taxa and for an additional 15 dictyopteran taxa (for which we had only morphological data). We had two datasets, a 59‐taxon dataset with five outgroup taxa, from Phasmatodea (2 taxa), Mantophasmatodea (1 taxon), Embioptera (1 taxon), and Grylloblattodea (1 taxon), and a 62‐taxon dataset with three additional outgroup taxa from Plecoptera (1 taxon), Dermaptera (1 taxon) and Orthoptera (1 taxon). We analysed the combined molecular?morphological dataset using the doublet and MK models in Mr Bayes , and using a parsimony heuristic search in paup . Within the monophyletic Mantodea, Mantoida is recovered as sister to the rest of Mantodea, followed by Chaeteessa; the monophyly of most of the more derived families as defined currently is not supported. We recovered novel phylogenetic hypotheses about the taxa within Blattodea (following Hennig, containing Isoptera). Unique to our study, one Bayesian analysis places Polyphagoidea as sister to all other Dictyoptera; other analyses and/or the addition of certain orthopteran sequences, however, place Polyphagoidea more deeply within Dictyoptera. Isoptera falls within the cockroaches, sister to the genus Cryptocercus. Separate parsimony analyses of independent gene fragments suggest that gene selection is an important factor in tree reconstruction. When we varied the ingroup taxa and/or outgroup taxa, the internal dictyopteran relationships differed in the position of several taxa of interest, including Cryptocercus, Polyphaga, Periplaneta and Supella. This provides further evidence that the choice of both outgroup and ingroup taxa greatly affects tree topology.  相似文献   

4.
The ocellate and pseudocellate diatoms in the Eupodiscaceae and Biddulphiaceae (respectively) are common inhabitants of the marine littoral (and plankton zone) with a rich fossil history making them important components of marine stratigraphic studies and good candidates for molecular dating work. These diatoms are important for un‐derstanding the phylogeny of the diatoms as a whole, as molecular phylogenies have blurred the traditional distinction between the pennate and multipolar non‐pennate diatoms. However, the convoluted taxonomic history of these groups has the potential to disrupt both stratigraphic and molecular dating studies. Although efforts have been made to examine frustule morphology of several ocellate and pseudocellate diatoms and develop a morphological scheme to define genera, very little work has been done to determine how these groups are interrelated. In this study, we use nuclear and chloroplast molecular markers to construct a phylogeny of a diverse sampling of Eupodiscaceae and Biddulphiaceae taxa. The ocellus‐bearing taxa (Eupodiscaceae) are monophyletic, and thus the ocellus may be a useful character in delimiting the Eupodiscaceae, the Biddulphiaceae are polyphyletic and scattered across a number of lineages of multipolar non‐pennate diatoms. Hypothesis testing aimed at assessing the likeliness of several morphology based hypotheses against the molecular data highlights uncertainty in both types of data. We present evidence that there are monophyletic genera within both the Biddulphiaceae and Eupodiscaceae, and recommend the taxa within the Odontella mobilensis/sinensis/regia clade be transferred to a new genus: Trieres Ashworth & Theriot.  相似文献   

5.
Comparative ultrastructural data have shown that at least two distinct groups exist within Carteria. Similarly, interpretations of variation in gross morphological features have led to the discovery of morphologically distinct groups within the genus. Partial sequences from the nuclear-encoded small- and large-subunit ribosomal RNA molecules of selected Carteria taxa were studied as a means of 1) testing hypotheses that distinct groups of species exist within the genus and 2) assessing monophyly of the genus. Parsimony analysis of the sequence data suggests that three Carteria species, C. lunzensis, C. crucifera, and C. olivieri, form a monophyletic group that is the basal sister group to all other ingroup flagellate taxa (including species of Chlamydomonas, Haematococcus, Stephanosphaera, Volvox, and Eudorina). Two other Carteria taxa, C. radiosa and Carteria sp. (UTEX isolate LB 762), form a clade that is the sister group to a clade that includes Haematococcus spp., Chlamydomonas spp., and Stephanosphaera. Thus, the sequence data support the interpretations of ultrastructural evidence that described two distinct Carteria lineages. Moreover, the sequence data suggest that these two Carteria groups do not form a monophyletic assemblage. Parsimony analysis of a suite of organismal (morphological, ultra-structural, life history, and biochemical) character data also suggest two distinct lineages among the five Carteria taxa; however, the organismal data are ambiguous regarding monophyly of these Carteria taxa. When the two independent data sets are pooled, monophyly of Carteria is not supported; therefore, the weight of available evidence, both molecular and organismal, fails to support the concept of Carteria as a natural genus.  相似文献   

6.
The tropical Asian taxa of the species‐rich genus Solanum (Solanaceae) have been less well studied than their highly diverse New World relatives. Most of these tropical Asian species, including the cultivated brinjal eggplant/aubergine and its wild progenitor, are part of the largest monophyletic Solanum lineage, the ‘spiny solanums’ (subgenus Leptostemonum or the Leptostemonum clade). Here we present the first phylogenetic analysis of spiny solanums that includes broad sampling of the tropical Asian species, with 42 of the 56 currently recognized species represented. Two nuclear and three plastid regions [internal transcribed spacer (ITS), waxy, ndhF‐rpL32, trnS‐trnG and trnT‐trnF] were amplified and used to reconstruct phylogenetic relationships using maximum likelihood and Bayesian methods. Our analyses show that Old World spiny solanums do not resolve in a single clade, but are part of three unrelated lineages, suggesting at least three independent introductions from the New World. We identify and describe several monophyletic groups in Old World solanums that have not been previously recognized. Some of these lineages are coherent in terms of morphology and geography, whereas others show considerable morphological variation and enigmatic distribution patterns. Tropical Asia occupies a key position in the biogeography of Old World spiny solanums, with tropical Asian taxa resolved as the closest relatives of diverse groups of species from Australia and Africa.  相似文献   

7.
The bivalve family Corbulidae, known colloquially as ‘basket clams’, includes species tolerating a wide variety of habitats ranging from open marine to freshwater. Previous studies of corbulid phylogenetics have been based mainly on shell morphology and to some extent soft tissue anatomy. However, these studies have been inadequate for corbulid classification because of difficulties in determining the inter‐relationships of primarily marine species with non‐marine species, the latter commonly exhibiting highly divergent morphological, ecological and environmental characteristics from their marine counterparts. The first molecular phylogenetic study of the Corbulidae is presented herein, analysing DNA sequences from the 18S rRNA and 28S rRNA genes, separately and in combination. Fifteen corbulid species and 14 outgroup taxa were included in the analyses. Corbulidae is resolved as monophyletic, comprising three groups with varying support. The non‐marine species form one group that we name as the subclade ‘limnetic–euryhaline Corbulidae’ (LEC) and comprising the genera Lentidium, Erodona and Potamocorbula. This LEC, which is consistently recovered as monophyletic, is globally distributed. The marine Corbulidae are divided into two well‐supported lineages in combined analyses although there are inconsistencies in their membership between single‐gene analyses. One of the two lineages consists of primarily Western Pacific taxa and the other of North American and Caribbean taxa. Finally, the authors advocate further study on the LEC to mitigate potential biological invasions beyond their native distribution.  相似文献   

8.
Previous attempts to resolve plesiosaurian phylogeny are reviewed and a new phylogenetic data set of 66 taxa (67% of ingroup taxa examined directly) and 178 characters (eight new) is presented. We recover two key novel results: a monophyletic Plesiosauridae comprising Plesiosaurus dolichodeirus, Hydrorion brachypterygius, Microcleidus homalospondylus, Occitanosaurus tournemirensis and Seeleyosaurus guilelmiimperatoris; and five plesiosaurian taxa recovered outside the split between Plesiosauroidea and Pliosauroidea. These taxa are Attenborosaurus conybeari, ‘Plesiosaurusmacrocephalus and a clade comprising Archaeonectrus rostratus, Macroplata tenuiceps and BMNH 49202. Based on this result, a new name, Neoplesiosauria, is erected for the clade comprising Plesiosauroidea and Pliosauroidea. Taxon subsamples of the new dataset are used to simulate previous investigations of global plesiosaurian relationships. Based on these simulations, most major differences between previous global phylogenetic hypotheses can be attributed to differences in taxon sampling. These include the position of Leptocleididae and Polycotylidae and the monophyly or paraphyly of Rhomaleosauridae. On this basis we favour the results recovered by our, larger analysis. Leptocleididae and Polycotylidae are sister taxa, forming a monophyletic clade within Plesiosauroidea, indicating that the large‐headed, short‐necked ‘pliosauromorph’ body plan evolved twice within Plesiosauria. Rhomaleosauridae forms the monophyletic sister taxon of Pliosauridae within Pliosauroidea. Problems are identified with previous phylogenetic definitions of plesiosaurian clades and new, stem‐based definitions are presented that should maintain their integrity over a range of phylogenetic hypotheses. New, rank‐free clade names Cryptoclidia and Leptocleidia are erected to replace the superfamilies Cryptoclidoidea and Leptocleidoidea. These were problematic as they were nested within the superfamily Plesiosauroidea. The incongruence length difference test indicates no significant difference in levels of homoplasy between cranial and postcranial characters.  相似文献   

9.
 The complete 18S rRNA gene sequences of four Sphaeroplea C.A. Agardh strains (Sphaeropleales, Sphaeropleaceae), two Atractomorpha Hoffman strains (Sphaeropleales, Sphaeropleaceae) and two Ankyra Fott strains (Chlorococcales, Characiaceae) were determined and subjected to phylogenetic analyses. The analyses indicated that all these taxa belong to a monophyletic lineage (Sphaeropleaceae) and are related to a group of chlorophycean algae comprising autosporic taxa and taxa that reproduce by zoospores which are characterized by directly opposed basal bodies. The taxonomic assignment of the Sphaeropleaceae as a family within the Sphaeropleales (Chlorophyta, Chlorophyceae) is discussed. Received December 22, 2000 Accepted September 25, 2001  相似文献   

10.
Phylogenetic relationships within the mite Family Phytoseiidae are little known. The presently accepted classification is based on the opinion of specialists, but not on cladistics analysis. The present paper focuses on the tribe Euseiini, containing 271 species, three subtribes and 10 genera. It aims to determine phylogenetic relationships between these taxa and test their monophyly. Molecular analysis combining six markers has been carried out for taxa we succeeded in collecting. Morphological, biogeographic and ecological data have been analysed to determine how these factors can explain the evolutionary relationships emphasized on the phylogenetic tree. Those analyses have been carried out for the taxa available for the molecular study, but also for all species of the tribe. The tribe Euseiini and the two subtribes considered are monophyletic (at least considering the available taxa), supporting the present hypothesis on Phytoseiidae classification. However, the genus Iphiseius seems to not be valid and its unique species is included in the genus Euseius. Clades that were observed within the genus Euseius do not match with recent work on species groups within this genus. It seems that some morphological features such as an insemination apparatus shape and seta length on the dorsal shield constitute some elements explaining the clusters within the genus Euseius. Biogeographic and ecological data analysis led us to hypothesize a west Gondwanian origin of the tribe Euseiini (Africa and Neotropical areas) on Rosids plants (especially of the Orders Malpiphiales and Fabales: subclass Fabidae). Further analyses are still required to (i) take into account more taxa (especially rare ones and species from the Ethiopian part), (ii) to consider more accurate morphological features through more powerful microscopic apparatus, and (iii) to associate a phylogenetic and evolutionary scenario to life traits (pollen feeders).  相似文献   

11.
Phylogenetic analysis of phytochrome (PHY) genes reveals the identity and relationships of four PHY loci among papilionoid Leguminosae. A phylogenetic analysis of loci combined according to species suggests that most of the tribe Millettieae belongs to one of two monophyletic clades: the Derris–Lonchocarpus or the Tephrosia clade. Together these two form a monophyletic group that is sister to a lineage represented by Millettia grandis of Millettia sect. Compresso-gemmatae. Collectively, this large monophyletic group is referred to as the Millettieae-core group, which based on our sampling, includes species of Millettieae that do not accumulate the nonprotein amino acid canavanine and that mostly have pseudoracemose or pseudopaniculate inflorescences. This new phylogenetic framework assists in targeting additional taxa for future sampling. For example, the “American Derris” (Deguelia), which accumulate canavanine, might not be members of the Millettieae core group. Afgekia is also predicted not to be a member because it accumulates canavanine and has an inflorescence of terminal racemes. PHY gene analysis specifically reveals that certain genera traditionally classified in Millettieae are actually distantly related to the Millettieae core group, such as Austrosteensia, Callerya, Craibia, Cyclolobium, Fordia, Platycyamus, Poecilanthe, and Wisteria.  相似文献   

12.
In the last decade, efforts to reconstruct suprageneric phylogeny of the Cyperaceae have intensified. We present an analysis of 262 taxa representing 93 genera in 15 tribes, sequenced for the plastid rbcL and trnL-F (intron and intergenic spacer). Cyperaceae are monophyletic and resolved into two clades, here recognised as Mapanioideae and Cyperoideae, and the overall topology is similar to results from previous studies. Within Cyperoideae, Trilepideae are sister to rest of taxa whereas Cryptangieae, Bisboeckelerieae and Sclerieae are resolved within Schoeneae. Cladium and Rhynchospora (and Pleurostachys) are resolved into clades sister to the rest of Schoeneae, lending support to the recognition of these taxa in separate tribes. However, we retain these taxa in Schoeneae pending broader sampling of the group. The phylogenetic position of 40 species in 21 genera is presented in this study for the first time, elucidating their position in Abildgaardieae (Trachystylis), Cryptangieae (Didymiandrum, Exochogyne), Cypereae (Androtrichum, Volkiella), Eleocharideae (Chillania), and Schoeneae (Calyptrocarya, Morelotia). More sampling effort (more taxa and the use of more rapidly evolving markers) is needed to resolve relationships in Fuireneae and Schoeneae.  相似文献   

13.
Coleoid cephalopod phylogeny is well studied via both molecular and morphological data, yet although some agreement has been reached (e.g. that extant Decapodiformes and Octopoda are monophyletic) many details remain poorly resolved. Fossil coleoids, for which much data exists, have hitherto not been incorporated into analyses. Their inclusion is highly desirable for the support of neontological phylogenies, to better reconstruct character‐state histories, and to investigate the placement of the fossil groups themselves. In this study we present and analyse a morphological data matrix including both extinct and extant taxa. Homology assumptions in our data are discussed. Our results are presented both with and without the constraint of a monophyletic Decapodiformes imposed. When analysed with this constraint our results are strikingly congruent with those from molecular phylogeny, for instance placing Idiosepius in a basal position within Decapodiformes, and recovering Oegopsida and Bathyteuthoidea (although as grades). Our results support an Octopodiformes clade (“vampire squid” Vampyroteuthis as sister to Octopoda) and an octopodiform interpretation for most fossil coleoids. They suggest the fossil sister taxon to the octopods to be Plesioteuthididae. Most fossil higher taxa are supported, although many genera, especially within suborder Teudopseina, appear para‐ or polyphyletic.  相似文献   

14.
Despite recent molecular systematic studies on the fossorial southern African skink subfamily Acontinae, evolutionary relationships among the three genera remain unresolved and disputed. Among these, the most recent study suggests that both Typhlosaurus and Acontias are paraphyletic, contrasting earlier results that suggest the presence of two divergent clades within Acontias. Here we further investigate the evolutionary relationships in the limbless fossorial southern African subfamily Acontinae with partial sequenced data derived from four mitochondrial loci (16S rRNA, 12S rRNA, cytochrome oxidase I and cytochrome b), as well as two nuclear protein coding loci (c‐mos and RAG‐1), in an attempt to clarify evolutionary relationships. Phylogenetic results derived from combined data analyses (comprising all six loci and totalling ~3.1 kb) using maximum parsimony, maximum likelihood and Bayesian inferences converged on the same topology. The resulting phylogeny showed Typhlosaurus as monophyletic, while the monotypic genus Acontophiops was nested intermediate to two reciprocally monophyletic Acontias clades. These two Acontias clades can be distinguished on the basis of a number of morphological, morphometric and biogeographical characters, underscoring the presence of two distinct groups. In the present study, we propose the following taxonomic changes based on the multilocus phylogeny. We retain the genus name Acontias for the medium‐ and large‐bodied skinks in clade 2 comprising all taxa in the Acontias meleagris complex as well as Acontias plumbeus, Acontias gracilicauda gracilicauda, Acontias breviceps, Acontias percivali percivali and Acontias percivali occidentalis. We designate a new genus Microacontias gen. nov. for the reciprocally monophyletic taxa in clade 1 comprised of all the small‐bodied taxa that include Microacontias litoralis, Microacontias lineatus lineatus, Microacontias lineatus grayi and Microacontias lineatus tristis. We examine the evolution of characters used in the taxonomy of the Acontinae and suggest that symplesiomorphic morphological characters among fossorial taxa have been an impediment to understanding the evolution of this subfamily. This study underscores the importance of the application of multiple molecular markers (both nuclear and mitochondrial) in determining the taxonomic diversity among fossorial skinks and emphasizes the application of phylogenetics in defining synapomorphic (shared derived) features.  相似文献   

15.
Freshwater snails in the genus Biomphalaria transmit Schistosoma mansoni in Africa, South America and the Caribbean region. Although considerable attention has been given to the identification of species, little is known of evolutionary relationships among the species. A phylogenetic analysis of 25 populations representing 11 species was performed on 25 enzyme loci examined using starch gel electrophoresis. A phylogenetic analysis of the individual populations produced 60 trees of equal length. The 60 trees have a consistency index value of 75.9% and a retention index value of 76.5%. The phylogenetic analysis provided strong support for the monophyly of Biomphalaria with either 14 or 15 synapomorphies uniting all of the species included and separating them from the outgroup, two species of Helisoma. Four nominal species represented by multiple populations formed monophyletic groups. Populations of B. sudanica, B. choanomphala, and B. alexandrina were interspersed. Ten arrangements were obtained for the populations of these three species. A variety of ingroup taxa were used to root the trees, and all provided support for the use of Helisoma species as an outgroup. In all of the trees obtained, the African species together formed a monophyletic group. In none of the trees obtained did the neotropical species form a monophyletic group. A constrained analysis requiring the monophyly of the neotropical species as well as the African species resulted in 90 trees just two steps longer than the shortest trees. Analysis of the species from either hemisphere alone resulted in decreased resolution, as measured by an increase in the number of trees obtained. This finding suggests that further comparisons of species from the two hemispheres will be of considerable value. Finally, two species which are resistant to infection with S. mansoni were included among the eleven studied. Neither of these species formed the sister group to all of the other species included, indicating that susceptibility is the plesiomorphic state, and that resistance is derived. Similarly, in none of the trees obtained did the two resistant species fall out as sister taxa, indicating that resistance arose independently twice.  相似文献   

16.
Phylogenetic relationships in Daltoniaceae (~200 species in 14 genera) are inferred from nucleotide sequences from five genes, representing all genomic compartments, using parsimony, likelihood and Bayesian methods. Alternative classifications for Daltoniaceae have favoured traits from either sporophytes or gametophytes; phylogenetic transitions in gametophytic leaf limbidia and sporophytic exostome ornamentation were evaluated using ancestral state reconstruction to assess the levels of conflict between these generations. Elimbate leaves and the cross‐striate exostome are reconstructed as plesiomorphic states. Limbate leaves and papillose exostomes evolved at least two and six times, respectively, without reversals. The evolution of leaf limbidia is relatively conserved, but exostome ornamentation is highly homoplasious, indicating that superficial similarity in peristomes gives unreliable approximations of phylogenetic relatedness. Our phylogenetic analyses show that Achrophyllum and Calyptrochaeta are reciprocally monophyletic. Within core Daltoniaceae, relationships among taxa with elimbate leaves are generally well understood. However, taxa with limbate leaves form a monophyletic group, but resolved subclades correspond to biogeographical entities, rather than to traditional concepts of genera. Daltonia (~21 species), Distichophyllum (~100 species) and Leskeodon (~20 species) are polyphyletic. Seven nomenclatural changes are proposed here. As the current taxonomy of Daltoniaceae lacks phylogenetic consistency, critical generic revisions are needed. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

17.
Sequences of the gene encoding the large subunit of RUBISCO (rbcL) for 30 genera in the six currently recognized families of conjugating green algae (Desmidiaceae, Gonatozygaceae, Mesotaeniaceae, Peniaceae, and Zygnemataceae) were analyzed using maximum parsimony and maximum likelihood; bootstrap replications were performed as a measure of support for clades. Other Charophyceae sensu Mattox and Stewart and representative land plants were used as outgroups. All analyses supported the monophyly of the conjugating green algae. The Desmidiales, or placoderm desmids, constitute a monophyletic group, with moderate to strong support for the four component families of this assemblage (Closteriaceae, Desmidiaceae, Gonatozygaceae, and Peniaceae). The analyses showed that the two families of Zygnematales (Mesotaeniaceae, Zygnemataceae), which have plesiomorphic, unornamented and unsegmented cell walls, are not monophyletic. However, combined taxa of these two traditional families may constitute a monophyletic group. Partitioning the data by codon position revealed no significant differences across all positions or between partitions of positions one and two versus position three. The trees resulting from parsimony analyses using first plus second positions versus third position differed only in topology of branches with poor bootstrap support. The tree derived from third positions only was more resolved than the tree derived from first and second positions. The rbcL‐based phylogeny is largely congruent with published analyses of small subunit rDNA sequences for the Zygnematales. The molecular data do not support hypotheses of monophyly for groups of extant unicellular and filamentous or colonial desmid genera exhibiting a common cell shape. A trend is evident from simple omniradiate cell shapes to taxa with lobed cell and plastid shapes, which supports the hypothesis that chloroplast shape evolved generally from simple to complex. The data imply that multicellular placoderm desmids are monophyletic. Several anomalous placements of genera were found, including the saccoderm desmid Roya in the Gonatozygaceae and the zygnematacean Entransia in the Coleochaetales. The former is strongly supported, although the latter is not, and Entransia's phylogenetic position warrants further study.  相似文献   

18.
19.
Current taxonomy of the Bryopsidales recognizes eight families; most of which are further categorized into two suborders, the Bryopsidineae and Halimedineae. This concept was supported by early molecular phylogenetic analyses based on rRNA sequence data, but subsequent cladistic analyses of morphological characters inferred monophyly in only the Halimedineae. These conflicting results prompted the current analysis of 32 taxa from this diverse group of green algae based on plastid‐encoded RUBISCO large subunit (rbcL) gene sequences. Results of these analyses suggested that the Halimedineae and Bryopsidineae are distinct monophyletic lineages. The families Bryopsidaceae, Caulerpaceae, Codiaceae, Derbesiaceae, and Halimediaceae were inferred as monophyletic, however the Udoteaceae was inferred as non‐monophyletic. The phylogenetic position of two taxa with uncertain subordinal affinity, Dichotomosiphon tuberosus Lawson and Pseudocodium floridanum Dawes & Mathieson, were also inferred. Pseudocodium was consistently placed within the halimedinean clade suggesting its inclusion into this suborder, however familial affinity was not resolved. D. tuberosus was the inferred sister taxon of the Halimedineae based on analyses of rbcL sequence data and thus a possible member of this suborder.  相似文献   

20.
Apple snails (Ampullariidae) are a diverse family of pantropical freshwater snails and an important evolutionary link to the common ancestor of the largest group of living gastropods, the Caenogastropoda. A clear understanding of relationships within the Ampullariidae, and identification of their sister taxon, is therefore important for interpreting gastropod evolution in general. Unfortunately, the overall pattern has been clouded by confused systematics within the family and equivocal results regarding the family's sister group relationships. To clarify the relationships among ampullariid genera and to evaluate the influence of including or excluding possible sister taxa, we used data from five genes, three nuclear and two mitochondrial, from representatives of all nine extant ampullariid genera, and species of Viviparidae, Cyclophoridae, and Campanilidae, to reconstruct the phylogeny of apple snails, and determine their affinities to these possible sister groups. The results obtained indicate that the Old and New World ampullariids are reciprocally monophyletic with probable Gondwanan origins. All four Old World genera, Afropomus, Saulea, Pila, and Lanistes, were recovered as monophyletic, but only Asolene, Felipponea, and Pomella were monophyletic among the five New World genera, with Marisa paraphyletic and Pomacea polyphyletic. Estimates of divergence times among New World taxa suggest that diversification began shortly after the separation of Africa and South America and has probably been influenced by hydrogeological events over the last 90 Myr. The sister group of the Ampullariidae remains unresolved, but analyses omitting certain outgroup taxa suggest the need for dense taxonomic sampling to increase phylogenetic accuracy within the ingroup. The results obtained also indicate that defining the sister group of the Ampullariidae and clarifying relationships among basal caenogastropods will require increased taxon sampling within these four families, and synthesis of both morphological and molecular data. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 61–76.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号