首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Selmi S  Boulinier T 《Oecologia》2004,139(3):440-445
The positive relationship between local abundance and distribution of species is a widely recognized pattern in community ecology. However, it has been suggested that this relationship can simply be an artefact of sampling because locally rare species are less detectable then locally abundant ones, and hence their distribution can easily be underestimated. Here, we use count data to investigate the relationship between distribution and abundance of passerines breeding in a sample of oases from southern Tunisia, and we provide a test of the sampling artefact hypothesis. In particular, we checked for a difference in detection probability between localized and widespread species, and we tested if increasing the sampling effort affects the significance of the relationship. A significant positive relationship between the average local abundance of passerine species and the proportion of occupied oases was found. The use of a capture-recapture approach allowed us to estimate and to compare the detection probabilities of localized and widespread species subsets. We found that localized species were locally less detectable than widespread species, which is consistent with the main assumption of the sampling artefact hypothesis. However, increasing the detection probability of species by conducting more counts did not affect the significance of the relationship, which did not give support to the sampling artefact hypothesis. Our work implies that sampling contributed to the distribution-abundance relationship we found, but that it is unlikely that such a relationship could entirely be explained by an artefact of sampling. It also underlines the insight that can be gained by using probabilistic approaches of estimating species number and detection probability when attempting to disentangle sampling from ecological effects in community ecology studies.  相似文献   

2.
袁秀  马克明  王德 《生态学报》2011,31(7):1955-1961
物种分布与多度间的正相关格局非常普遍,但该格局的生态机制却一直不太明确。研究者提出了很多假说来解释这种分布-多度关系,其中物种的生态幅和生态位(资源可利用性)机制的研究较多。为了验证物种的生态幅和生态位是否能解释物种的多度-分布格局,本文研究了黄河三角洲地区湿地植物分布、多度、生态位和生态幅间的关系,结果表明:该区物种分布与多度呈显著正相关,且均与生态幅显著正相关,物种分布与生态位显著负相关,但物种多度与生态位相关性不显著。这说明物种的分布越广,其多度越高,环境容忍度越大;而可利用资源更多的物种分布更广,环境容忍度越大的物种多度越多,资源可利用性对该区物种多度影响不大。本研究说明物种生态幅能解释物种分布-多度正相关格局,而生态位假说不能很好的解释这一格局;应该还有其他因素一起解释这一物种分布-多度正相关格局。  相似文献   

3.
1. Positive correlations between local abundance and distribution on a larger spatial scale are commonly observed among related species.
2. Within parasite species, the same relationship may be expected between prevalence and intensity of infection across host species used. Across parasite species, a positive relationship is expected between average abundance in a host population and the number of host species that can be exploited based on the resource breadth hypothesis. Trade-offs between the ability to exploit many host species and the potential for heavy infections, however, could result in a negative relationship.
3. Intraspecifically, using data on 51 helminth species parasitic in birds, prevalence and intensity of infection among host species used are generally only weakly correlated. Only in nematodes is there an overall positive relationship between prevalence and intensity.
4. A comparative analysis was performed on data from 389 species of cestodes, trematodes and nematodes parasitic in birds to determine how host specificity covaries interspecifically with abundance, measured both as prevalence and intensity of infection.
5. After controlling for phylogenetic influences and sampling effort, the number of host species used correlated positively with prevalence in all three parasite taxa, and with intensity of infection in trematodes only.
6. These results do not support the existence of a trade-off between abundance and the use of many host species, as has been found for fish parasites. Instead, whatever makes helminth parasites of birds abundant within a host population may facilitate their successful colonization of new host species.  相似文献   

4.
We investigate the patterns of abundance‐spatial occupancy relationships of adult parasite nematodes in mammal host populations (828 populations of nematodes from 66 different species of terrestrial mammals). A positive relationship between mean parasite abundance and host occupancy, i.e. prevalence, is found which suggests that local abundance is linked to spatial distribution across species. Moreover, the frequency distribution of the parasite prevalence is bimodal, which is consistent with a core‐satellite species distribution. In addition, a strong positive relationship between the abundance (log‐transformed) and its variance (log‐transformed) is observed, the distribution of worm abundance being lognormally distributed when abundance values have been corrected for host body size.
Hanski et al. proposed three distinct hypotheses, which might account for the positive relationship between abundance and prevalence in free and associated organisms: 1) ecological specialisation, 2) sampling artefact, and 3) metapopulation dynamics. In addition, Gaston and co‐workers listed five additional hypotheses. Four solutions were not applicable to our parasitological data due to the lack of relevant information in most host‐parasite studies. The fifth hypothesis, i.e. the confounded effects exerted by common history on observed patterns of parasite distributions, was considered using a phylogeny‐based comparison method. Testing the four possible hypotheses, we obtained the following results: 1) the variation of parasite distribution across host species is not due to phylogenetic confounding effects; 2) the positive relationship between mean abundance and prevalence of nematodes may not result from an ecological specialisation, i.e. host specificity, of these parasites; 3) both a positive abundance‐prevalence relationship and a negative coefficient of variation of abundance‐prevalence relationship are likely to occur which corroborates the sampling model developed by Hanski et al. We argue that demographic explanations may be of particular importance to explain the patterns of bimodality of prevalence when testing Monte‐Carlo simulations using epidemiological modelling frameworks, and when considering empirical findings. We conclude that both the bimodal distribution of parasite prevalence and the mean‐variance power function simply result from demographic and stochastic patterns (highlighted by the sampling model), which present compelling evidence that nematode parasite species might adjust their spatial distribution and burden in mammal hosts for simple epidemiological reasons.  相似文献   

5.
Jani Heino 《Ecography》2005,28(3):345-354
A positive relationship between regional distribution and local abundance of species is almost ubiquitous macroecological pattern, yet the mechanisms behind this pattern remain poorly understood. I tested for the relationship between regional distribution and local abundance of stream insect species in a boreal drainage system, with a specific aim to examine if this relationship follows the mechanistic basis of either the niche-based (niche breadth and niche position) or metapopulation models. There was a positive relationship between regional distribution and local abundance of stream insects, and there also were significant relationships between distribution/abundance and niche breadth or niche position. These results thus suggest that widely distributed species tend to be, on average, locally more abundant, have wider niches and lower marginality of niche position with regard to environmental factors than species that have more restricted distributions. However, although significant, there was much unexplained variability around these relationships, suggesting that other mechanisms (e.g. metapopulation dynamics) besides differences in species' niches are likely to affect the distribution and abundance of stream insects, at least within a drainage system. The results thus showed that 1) although niche position was more consistently related to the positive distribution-abundance relationship, ecologists should not abandon niche breadth as a potential mechanism behind this relationship, and 2) that several mechanisms are likely to act in concert in determining the relationship between distribution and abundance of species.  相似文献   

6.
Aim We investigated how the spatial distribution of parasites, measured as either their geographical range size or their frequency of occurrence among localities, relates to either their average local abundance or the variance in their abundance among localities where they occur. Location We used data on the abundance of 46 metazoan parasite species in 66 populations of threespine sticklebacks, Gasterosteus aculeatus, from Europe and North America. Methods For each parasite species, frequency of occurrence was calculated as the proportion of stickleback populations in which it occurred, and geographical range size as the area within the smallest possible polygon delimited using the coordinates of the localities where it occurred. Generalized linear models were used to assess how these two measures of spatial distribution were influenced by several predictor variables: geographical region (North America or Europe), life cycle (simple or complex), average local abundance, the coefficient of variation in abundance across localities, and median prevalence (proportion of infected hosts within a locality). Results Our analyses uncovered four patterns. First, parasites in North America tend to have higher frequencies of occurrence among surveyed localities, but not broader geographical ranges, than those in Europe. Second, parasite species with simple life cycles have wider geographical ranges than those with complex cycles. Third, there was a positive relationship between average abundance of the different parasite species and their frequency of occurrence, but not between average abundance and geographical range size. Fourth, the coefficient of variation in abundance covaried positively with both the frequency of occurrence and geographical range size across the different parasite species. Thus, all else being equal, parasites showing greater site‐to‐site variability in abundance occur in a greater proportion of localities and over a broader geographical area than those with a more stable abundance among sites. Main conclusions Local infection patterns are linked with large‐scale distributional patterns in fish parasites, independently of host effects, such that local commonness translates into regional commonness. The mechanisms linking parasite success at both scales remain unclear, but may include those that maintain the continuum between specialist and generalist parasites. Regardless, the observed patterns have implications for the predicted changes in the geographical distributions of many parasites in response to climate change.  相似文献   

7.
Parasites and the regional distribution of bumblebee species   总被引:1,自引:0,他引:1  
Parasites and regional processes may be important to structure local species assemblages In particular, it has been hypothesized that widely distributed and abundant species should harbour more parasite species which could give them a competitive advantage in local species assemblages Empirical evidence bearing on these points are scarce and mainly restricted to vertebrate hosts or plants The aim of this study was to provide data in insect hosts and to test whether the patterns in field populations conform with those correlates expected from the parasite-host distribution hypothesis We investigated species assemblages of bumblebees at 12 different sites in a mesoscale region with their parasites over two consecutive years Parasites included dipteran and hymenopteran parasitoids. nematodes, mites, and protozoa The mean number of parasite species per host species ranged from 1 to 8 To account for sampling effort, all data were corrected for sample size effects The number of parasite species per average host individual (parasite load) ranged from 0 09 to 0 75 In cross-species comparisons, the number of parasite species per host species was positively correlated with regional distribution, i e the number of sites a host species occupied m the region, and with the average local host abundance The same relationships were found for parasite load In addition, parasite load correlated positively with average colony size of the host species, but not with body size of the individuals Bumblebee species were bimodally distributed When separated into widely-distributed and locally-occurring species, common hosts harboured more parasite species than rare ones Moreover, workers of common species individually had higher parasite loads From these results, we conclude that some of the necessary preconditions for parasites being able to affect the distribution and occurrence of their hosts are met in bumblebees The findings support a general pattern that parasite loads correlate positively with local abundance and geographical distribution of their hosts, also on mesoscales usually considered in ecological studies  相似文献   

8.
Abstract 1. Knowing how species are distributed across a landscape can considerably aid the management of populations and species richness. Insect parasitoids constitute a large fraction of terrestrial biodiversity and help regulate other insect populations, but their ecology is poorly known at a landscape scale. 2. Using Malaise traps distributed first extensively and then intensively across woodland patches in an agricultural landscape, we tested whether four ichneumonid subfamilies display (i) a positive relationship between abundance and occupancy, (ii) a positive relationship between abundance in the extensive sample and abundance in the intensive sample, and (iii) aggregation across traps. 3. A positive relationship between abundance and occupancy was found across species in both samples, and was relatively strong. Abundance in the extensive samples was positively correlated with abundance in the intensive samples. On average, species were aggregated in both samples, although aggregation was not necessary for a positive abundance–occupancy relationship. 4. These results suggest that ichneumonid species can largely be classified on a continuum from widespread and locally abundant to localised and locally scarce. The former species allow the potential for pervasive natural control of host populations. The latter species, which constitute a substantial majority of the species list, will be vulnerable to extinction through both stochastic forces and widespread adverse forces such as climate change and habitat modification. However, the assessment of species’ status is likely to be facilitated by the positive abundance–occupancy relationship. 5. Species inventories for ichneumonids will be taxing because of the need to sample both intensively and extensively to detect rare species, which constitute the majority of species. However, it is possible to generalise species abundances across spatial scales and years, facilitating monitoring.  相似文献   

9.
Historically, diversity in a community was often believed to result primarily from local processes, but recent evidence suggests that regional diversity may strongly influence local diversity as well. We used experimental and observational vegetation data from Konza Prairie, Kansas, USA, to determine if: (1) there is a relationship between local and regional richness in tallgrass prairie vegetation; (2) local dominance reduces local species richness; and (3) reducing local dominance increases local and regional species richness. We found a positive relationship between regional and local richness; however, this relationship varied with grazing, topography and fire frequency. The decline in variance explained in the grazed vegetation, in particular, suggested that local processes associated with grazing pressure on the dominant grasses strongly influenced local species richness. Experimental removal of one of the dominant grasses, Andropogon scoparius , from replicate plots resulted in a significant increase in local species richness compared to adjacent reference plots. Overall all sites, species richness was higher in grazed (192 spp.) compared to ungrazed (158 spp.) areas. Across the Konza Prairie landscape, however, there were no significant differences in the frequency distribution of species occurrences, or in the relationship between the number of sites occupied and average abundance in grazed compared to ungrazed areas. Thus, local processes strongly influenced local richness in this tallgrass prairie, but local processes did not produce different landscape-scale patterns in species distribution and abundance. Because richness was enhanced at all spatial scales by reducing the abundance of dominant species, we suggest that species richness in tallgrass prairie results from feedbacks between, and interactions among, processes operating at multiple scales in space and time.  相似文献   

10.
Aims We have two aims: (1) to examine the relationship between local population persistence, local abundance and regional occupancy of stream diatoms and (2) to characterize the form of the species–occupancy frequency distribution of stream diatoms. Location Boreal streams in Finland. There were three spatial extents: (1) across ecoregions in Finland, (2) within ecoregions in Finland, and (3) within a single drainage system in southern Finland. Methods Diatoms were sampled from stones (epilithon), sediment (epipelon) and aquatic plants (epiphyton) in streams using standardized sampling methods. To assess population persistence, diatom sampling was conducted monthly at four stream sites from June to October. The relationships between local population persistence, local abundance and regional occupancy were examined using correlation analyses. Results There was a significant positive relationship between local persistence and abundance of diatoms in epilithon, epipelon and epiphyton. Furthermore, local abundance and regional occupancy showed a significant positive relationship at multiple spatial extents; that is, across ecoregions, within ecoregions and within a drainage system. The relationships between occupancy and abundance did not differ appreciably among impacted and near pristine‐reference sites. The occupancy–frequency distribution was characterized by a large number of satellite species which occurred at only a few sites, whereas core species that occurred at most sites were virtually absent. Main conclusions The positive relationship between local population persistence and abundance suggested that a high local abundance may prevent local extinction or that high persistence is facilitated by a high local cell density. High local persistence and local abundance may also positively affect the degree of regional occupancy in stream diatoms. The results further showed that anthropogenic effects were probably too weak to bias the relationship between occupancy and abundance, or that the effects have already modified the distribution patterns of stream diatoms. The small number of core species in the species–occupancy frequency distribution suggested that the regional distribution patterns of stream diatoms, or perhaps unicellular microbial organisms in general, may not be fundamentally different from those described previously for multicellular organisms, mainly in terrestrial environments, although average global range sizes may differ sharply between these two broad groups of organisms.  相似文献   

11.
Similarity in parasite community composition often decreases with both increasing geographic distance and environmental dissimilarity between localities, though it is unknown whether similarity in local abundance of selected parasite species follows similar rules. We tested this using data on metazoan parasites in 126 stickleback (Gasterosteus aculeatus) populations, with locations from Eurasia, eastern North America, and western North America treated separately. Similarity values were regressed against pairwise distances between localities; after correcting for distance, the effect of environmental dissimilarity was assessed by splitting similarity values into those between pairs of localities with either similar, moderately different or very different salinity (freshwater, marine or brackish). For selected parasite species, pairwise similarity in abundance (mean no. parasites per host) were computed across all localities, and treated as above. Similarity in parasite community composition decreased with increasing distance between localities in all three geographic regions. A significant effect of environmental difference was found in all regions: for a given distance between two sites, their parasite communities were more similar if they were of the same salinity. Slopes for distance decay in similarity were consistently higher for eastern North America than for Eurasia. Among the 12 parasite species for which sufficient data were available, only 4 showed the expected relationship, i.e. the greater the geographical separation between host populations, the greater the difference in parasite abundance; also, significant effects of environmental differences in salinity were only found for 3 of these species. Our findings show that parasite communities of sticklebacks are structured by geographical distance and local salinity conditions. The results indicate that strong effects at the community level do not translate into corresponding effects at the population level, suggesting that parasite dispersal and population dynamics are controlled by different processes.  相似文献   

12.
Contrary to species occurrence, little is known about the determinants of spatial patterns of intraspecific variation in abundance, particularly for parasitic organisms. In this study, we provide a multi‐faceted overview of spatial patterns in parasite abundance and examine several potential underlying processes. We first tested for a latitudinal gradient in local abundance of the regionally most common parasite species and whether these species achieve higher abundances at the same localities (shared hot spots of infection). Secondly, we tested whether intraspecific similarity in local abundance between sites follows a spatial distance decay pattern or is better explained by variation in extrinsic biotic and abiotic factors between localities related to local parasite transmission success. We examined the infection landscape of a model fish host system (common and upland bullies, genus Gobiomorphus: Eleotridae) across its entire distributional range. We applied general linear models to test the effect of latitude on each species local abundance independently, including the abundance of each co‐infecting species as another predictor. We computed multiple regressions on distance matrices among localities based on abundance of each of the four most common trematode species, as well as for geographic distance, biotic and abiotic distinctness of the localities. Our results showed that the most widely distributed parasites of bullies also achieve the highest mean local abundances, following the abundance – occupancy relationship. Variation in local abundance of any focal parasite species was independent of latitude, the abundance of co‐occurring species and spatial distance or disparity in biotic attributes between localities. For only one parasite species, similarity of abundance between sites covaried with the extent of abiotic differences between sites. The lack of association between hot spots of infection for co‐occurring species reinforces the geographic mosaic scenario in which hosts and parasites coevolve by suggesting non‐deterministic, species‐specific variation in parasite abundance across space.  相似文献   

13.
Heino J 《Oecologia》2008,157(2):337-347
The interspecific relationship between local abundance and regional distribution, as well as the occupancy frequency distribution, are widely studied topics in macroecology. A positive abundance-occupancy relationship has been found in a majority of studies, and satellite species modes are typically dominant in occupancy frequency distributions. However, there are a number of exceptions to these "general" findings, and only a few studies have examined these patterns and their temporal variability in stream organisms. I examined both abundance-occupancy relationships and occupancy frequency distributions in stream insects in a boreal drainage system over six consecutive years. I found that the positive interspecific abundance-occupancy relationship was highly stable temporally, with coefficients of determination ranging from 0.25 to 0.47 over the years. There were no strong differences in the strength and slope of the abundance-occupancy relationship between non-predatory and predatory insect species in each year. Temporally stable abundance-occupancy relationships were paralleled by among-year patterns in both abundance and occupancy, with locally abundant and widely distributed species remaining locally abundant and widely distributed over the years, while locally uncommon and regionally rare species showed the opposite. Occupancy frequency distributions were strongly right-skewed, mirroring the dominance of the left-most satellite mode of regionally rare species. That the abundance-occupancy relationship, species' abundances and distributions, as well as the dominance of satellite species in occupancy frequency distribution were temporally stable suggest that niche-based models are strong candidates for explaining these patterns in stream insects. By contrast, metapopulation-based models that predict clear temporal variability in species' abundance and occupancy, as well as bimodal occupancy frequency distributions, are less plausible candidates for explaining the observed patterns. The present findings are the opposite to those in some terrestrial studies, but they are in agreement with other terrestrial studies and with a few previous studies on stream organisms.  相似文献   

14.
A general positive interspecific relationship between local abundance and geographic range size in animals has prompted speculation that a similar relationship might exist intraspecifically, such that a species is widespread at times when it is locally abundant, and more restricted in distribution when it is locally rare. Current evidence suggests that intraspecific relationships often are positive, but that there is considerable variation in the pattern exhibited by species. Here, we use data on British birds to test the hypotheses that species showing a high mean or wide spread of local densities or range sizes will be more likely to show strong intraspecific relationships between abundance and geographic range size. These data show only inconsistent support for an effect of the range of densities or of occupancies on intraspecific abundance-range size relationships. However, the strength of an intraspecific relationship does seem to be related to the mean occupancy of species, and whether or not a species exhibits temporal trends in density, with the strongest relationships found in species with simultaneous trends in both density and occupancy. We suggest that these results are explained by time lags in the loss or gain of species at occupied sites in response to reductions or increases in density.  相似文献   

15.
We tested the hypothesis that avian haemosporidian (malaria) parasites specialize on hosts that can be characterized as predictable resources at a site in Amazonian Ecuador. We incorporated host phylogenetic relationship and relative abundance in assessing parasite specialization, and we examined associations between parasite specialization and three host characteristics – abundance, mass and longevity – using quantile regression, phylogenetic logistic regression and t‐tests. Hosts of specialist malaria parasite lineages were on average more abundant than hosts of generalist parasite lineages, but the relationship between host abundance and parasite specialization was not consistent across analyses. We also found support for a positive association between parasite specialization and host longevity, but this also was not consistent across analyses. Nonetheless, our findings suggest that the predictability of a host resource may play a role in the evolution of specialization. However, we also discuss two alternative explanations to the resource predictability hypothesis for specialization: (i) that interspecific interactions among the parasites themselves might constrain some parasites to a specialist strategy, and (ii) that frequent encounters with multiple host species, mediated by blood‐sucking insects, might promote generalization within this system.  相似文献   

16.
Local, regional and global influences on the patterns of parasite species richness of 39 freshwater fish species from Central Europe were investigated. Host local abundance and host occurrence were considered respectively as local and regional factors, while host geographical range in longitude and latitude was considered as a global factor. Influences of size, ecology and behavior of hosts were also included in a comparative analysis using the independent contrasts method. We considered host habitat, host diet, host shoaling behavior and mobility. We found a positive relationship between local occurrence of fish and global range of their distribution. We confirmed previous findings showing the importance of host behavior and ecology on the variability of parasite species richness. Second, we showed how a global pattern, such as host geographical range, may affect the variability in parasite species richness through its effects on local abundance and distribution of hosts. A negative relationship between endoparasite species richness and host longitudinal range was found. This suggests that fish with eastern distribution live in the boundary of their distribution in Central Europe far from their center of distribution, which should also be characterized by a higher diversity of parasites.  相似文献   

17.
The abundance of a species is not constant across its geographical range; it has often been assumed to decrease from the centre of a species’ range toward its margins. The central assumption of this “favourable centre” model is tested for the first time with parasites, using different species of helminth parasites exploiting fish as definitive hosts. Data on prevalence (percentage of hosts that are infected) and abundance (mean no. parasites per host) were compiled for 8 helminth species occurring in 23 populations of yellow perch Perca flavescens, from continental North America. For each parasite species, correlations were computed between latitude and both local prevalence and abundance values. In addition, the relationships between the relative prevalence or abundance in one locality and the distance between that locality and the one where the maximum value was reported, were assessed separately for each species to determine whether abundance tends to decrease away from the presumed centre of the range, where it peaks. For both the cestode Proteocephalus pearsei and the acanthocephalan Leptorhynchoides thecatus, there was a positive relationship between prevalence or abundance and the latitude of the sampled population. There was also a significant negative relationship between relative prevalence and the distance from the locality showing the maximum value in P. pearsei, but no such pattern was observed for the other 7 parasite species. Since this single significant decrease in prevalence with increasing distance from the peak value may be confounded by a latitudinal gradient, it appears that the distribution of abundance in parasites of perch does not follow the favourable centre model. This means that the environmental variables affecting the density of parasites (host availability, abiotic conditions) do not show pronounced spatial autocorrelation, with nearby sites not necessarily providing more similar conditions for the growth of parasite populations than distant sites.  相似文献   

18.
This study evaluated the influence of rainfall amount on the abundance, species richness, and species occurrence and abundance distribution of the ciliate community associated with the bromeliad Aechmea distichantha. The plants were collected from a rock wall of about 10‐km long at the left bank of Paraná River. We assessed the effects of both spatial and temporal variables on the community attributes, as well as whether plants geographically closer have a similar abundance distribution and species composition. The ciliate community was substantially distinct between both hydrological periods, with greater values of species richness and abundance in the rainy period. No spatial structuring (differences in the species occurrence and abundance distribution among strata) or geographical similarity (similarity in ciliate species composition among the plants) was found. Multiple regression analysis showed a positive relationship only between the ciliate abundances and water volumes for both periods. Although few of the formulated predictions were confirmed, our study provides valuable information on the ecological aspects of the ciliate community inhabiting bromeliad phytotelmata.  相似文献   

19.
Aim We test the similarity–distance decay hypothesis on a marine host–parasite system, inferring the relationships from abundance data gathered at the lowest scale of parasite community organization (i.e. that of the individual host). Location Twenty‐two seasonal samples of the bogue Boops boops (Teleostei: Sparidae) were collected at seven localities along a coastal positional gradient from the northern North‐East Atlantic to the northern Mediterranean coast of Spain. Methods We used our own, taxonomically consistent, data on parasite communities. The variations in parasite composition and structure with geographical and regional distance were examined at two spatial scales, namely local parasite faunas and component communities, using both presence–absence (neighbour joining distance) and abundance (Mahalanobis distance) data. The influence of geographical and regional distance on faunal/community divergence was assessed through the permutation of distance matrices. Results Our results revealed that: (1) geographical and regional distances do not affect the species composition in the system under study at the higher scales; (2) geographical distance between localities contributes significantly to the decay of similarity estimated from parasite abundance at the lowest scale (i.e. the individual host); (3) the structured spatial patterns are consistent in time but not across seasons; and (4) a restricted clade of species (the ‘core’ species of the bogue parasite fauna) contributes substantially to the observed patterns of both community homogenization and differentiation owing to the strong relationship between local abundance and regional distribution of species. Main conclusions The main factors that tend to homogenize the composition of parasite communities of bogue at higher regional scales are related to the dispersal of parasite colonizers across host populations, which we denote as horizontal neighbourhood colonization. In contrast, the spatial structure detectable in quantitative comparisons only, is related to a vertical neighbourhood colonization associated with larval dispersal on a local level. The stronger decline with distance in the spatial synchrony of the assemblages of the ‘core’ species indicates a close‐echoing environmental synchrony that declines with distance. Our results emphasize the importance of the parasite supracommunity (i.e. parasites that exploit all hosts in the ecosystem) to the decay of similarity with distance.  相似文献   

20.
1. Patterns of species richness often correlate strongly with measures of energy. The more individuals hypothesis (MIH) proposes that this relationship is facilitated by greater resources supporting larger populations, which are less likely to become extinct. Hence, the MIH predicts that community abundance and species richness will be positively related. 2. Recently, Buckley & Jetz (2010, Journal of Animal Ecology, 79, 358-365) documented a decoupling of community abundance and species richness in lizard communities in south-west United States, such that richer communities did not contain more individuals. They predicted, as a consequence of the mechanisms driving the decoupling, a more even distribution of species abundances in species-rich communities, evidenced by a positive relationship between species evenness and species richness. 3. We found a similar decoupling of the relationship between abundance and species richness for lizard communities in semi-arid south-eastern Australia. However, we note that a positive relationship between evenness and richness is expected because of the nature of the indices used. We illustrate this mathematically and empirically using data from both sets of lizard communities. When we used a measure of evenness, which is robust to species richness, there was no relationship between evenness and richness in either data set. 4. For lizard communities in both Australia and the United States, species dominance decreased as species richness increased. Further, with the iterative removal of the first, second and third most dominant species from each community, the relationship between abundance and species richness became increasingly more positive. 5. Our data support the contention that species richness in lizard communities is not directly related to the number of individuals an environment can support. We propose an alternative hypothesis regarding how the decoupling of abundance and richness is accommodated; namely, an inverse relationship between species dominance and species richness, possibly because of ecological release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号