首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cytochrome P450 mono-oxygenases from peppermint, spearmint and perilla (all members of the family Lamiaceae) mediate the regiospecific hydroxylation of the parent olefin (−)-limonene to produce essential oil components oxygenated at C3, C6 and C7, respectively. Cloning, expression and mutagenesis of cDNAs encoding the peppermint limonene-3-hydroxylase and the spearmint limonene-6-hydroxylase have allowed the identification of a single amino acid residue which determines the regiospecificity of oxygenation by these two enzymes. A hybridization strategy provided a cytochrome P450 limonene hydroxylase cDNA from perilla with which to further evaluate the structural determinants of regiospecificity for oxygenation of the common substrate (−)-limonene. The perilla cDNA was a partial clone of 1550 bp (lacking the N-terminal membrane insertion domain), and shared 66% identity with the peppermint 3-hydroxylase and spearmint 6-hydroxylase at the amino acid level. The perilla cytochrome P450 was expressed in Escherichia coli as a chimeric protein fused with the N-terminal membrane insertion domain of the limonene-3-hydroxylase. The kinetically competent recombinant protein was characterized and shown to produce a mixture of C3-, C6- and C7-hydroxylated limonene derivatives with a distribution of 33%, 14% and 53%, respectively.  相似文献   

2.
3.
cDNA clones encoding limonene synthase and limonene-3-hydroxylase, both driven by the CaMV 35S promoter, were independently transformed into peppermint (Menthaxpiperita) to alter the production and disposition of (-)-limonene, the first committed intermediate of essential oil biosynthesis in this species. Although both genes were constitutively expressed in leaves of transformed plants, the corresponding enzyme activities were not significantly increased in the glandular trichome sites of essential oil biosynthesis; thus, there was no effect on oil yield or composition in the regenerated plants. Cosuppression of the hydroxylase gene, however, resulted in the accumulation of limonene (up to 80% of the essential oil compared to about 2% of the oil in wild type plants), without influence on oil yield. These results indicate that limonene does not impose negative feedback on the synthase, or apparently influence other enzymes of monoterpene biosynthesis in peppermint, and suggests that pathway engineering can be employed to significantly alter essential oil composition without adverse metabolic consequences.  相似文献   

4.
The oxygenation pattern of the essential oil monoterpenes of commercial mint (Mentha) species is determined by regiospecific cytochrome P450-catalyzed hydroxylation of the common olefinic precursor (-)-4S-limonene. In spearmint (M. spicata), C6-allylic hydroxylation leads to (-)-trans-carveol and thence (-)-carvone, whereas in peppermint (M. x piperita), C3-allylic hydroxylation leads to (-)-trans-isopiperitenol and ultimately (-)-menthol. cDNAs encoding the C6-hydroxylase and C3-hydroxylase from spearmint and peppermint, respectively, were isolated by a combination of reverse genetic and homology-based cloning methods (S. Lupien, F. Karp, M. Wildung, and R. Croteau, Arch. Biochem. Biophys. 368, 181-192, 1999). Although both hydroxylase genes were confirmed by functional expression using the baculovirus-Spodoptera system, too little protein was available by this approach to permit detailed study of the structure-function relationships of these catalysts, especially the substrate binding determinants that underlie the regiochemistry and stereochemistry of the reactions. Therefore, heterologous overexpression systems based on Escherichia coli and Saccharomyces cerevisiae were developed to produce several N-terminally modified versions of the recombinant hydroxylases. Ancillary methods for the solubilization, purification, and reconstitution (with recombinant spearmint cytochrome P450 reductase) of the limonene hydroxylases were also devised, with which substrate binding behavior and precise regiochemistry and stereochemistry of product formation were determined.  相似文献   

5.
The oxygenation pattern of the cyclic monoterpenoids of commercial mint (Mentha) species is determined by regiospecific cytochrome P450-catalyzed hydroxylation of the common olefinic precursor (-)-4S-limonene. In peppermint (Mentha x piperita), C3-allylic hydroxylation leads to (-)-trans-isopiperitenol, whereas in spearmint, C6-allylic hydroxylation leads to (-)-trans-carveol. The microsomal limonene-6-hydroxylase was purified from the oil glands of spearmint, and amino acid sequences from the homogeneous enzyme were used to design PCR primers with which a 500-bp amplicon was prepared. This nondegenerate probe was employed to screen a spearmint oil gland cDNA library from which the corresponding full-length cDNA was isolated and subsequently confirmed as the C6-hydroxylase by functional expression using the baculovirus-Spodoptera system. The probe was also utilized to isolate two closely related full-length cDNA species from a peppermint oil gland cDNA library which were confirmed as the limonene-3-hydroxylase by functional expression as before. Deduced sequence analysis of these regiospecific cytochrome P450 monooxygenases indicates that both enzymes bear a typical amino-terminal membrane anchor, consistent with the microsomal location of the native forms, exhibit calculated molecular weights of 56,149 (spearmint) and about 56,560 (peppermint), and are very similar in primary sequence (70% identity and 85% similarity). The availability of these regiochemically distinct, yet very closely related, recombinant hydroxylases and their corresponding genes provides a unique model system for understanding structure-function relationships in cytochrome P450 substrate binding and catalysis, and a means for transgenic manipulation of monoterpene biosynthetic pathways in plants.  相似文献   

6.
A radiation-induced mutant of Scotch spearmint (Mentha × gracilis) was shown to produce an essential oil containing principally C3-oxygenated p-menthane monoterpenes that are typical of peppermint, instead of the C6-oxygenated monoterpene family characteristic of spearmint. In vitro measurement of all of the enzymes responsible for the production of both the C3-oxygenated and C6-oxygenated families of monoterpenes from the common precursor (−)-limonene indicated that a virtually identical complement of enzymes was present in wild type and mutant, with the exception of the microsomal, cytochrome P-450-dependent (−)-limonene hydroxylase; the C6-hydroxylase producing (−)-trans-carveol in the wild type had been replaced by a C3-hydroxylase producing (−)-trans-isopiperitenol in the mutant. Additionally, the mutant, but not the wild type, could carry out the cytochrome P-450-dependent epoxidation of the α,β-unsaturated bond of the ketones formed via C3-hydroxylation. Although present in the wild type, the enzymes of the C3-pathway that convert trans-isopiperitenol to menthol isomers are synthetically inactive because of the absence of the key C3-oxygenated intermediate generated by hydroxylation of limonene. These results, which clarify the origins of the C3- and C6-oxygenation patterns, also allow correction of a number of earlier biogenetic proposals for the formation of monoterpenes in Mentha.  相似文献   

7.
Monoterpene biosynthesis pathway construction in Escherichia coli   总被引:3,自引:0,他引:3  
Four genes encoding sequential steps for the biosynthesis of the spearmint monoterpene ketone (-)-carvone from the C(5) isoprenoid presursors isopentenyl diphosphate and dimethylallyl diphosphate were installed in Escherichia coli. Inducible overexpression of these genes in the bacterial host allowed production of nearly 5 mg/l of the pathway intermediate (-)-limonene, which was mostly excreted to the medium such that products of the downstream steps, (-)-carveol and (-)-carvone, were not detected. Assay of pathway enzymes and intermediates indicated that flux through the initial steps catalyzed by geranyl diphosphate synthase and limonene synthase was severely limited by the availability of C(5) isoprenoid precursors in the host. Feeding studies with (-)-limonene, to overcome the flux deficiency, demonstrated the functional capability of limonene-6-hydroxylase and carveol dehydrogenase to produce the end-product carvone; however, uptake and trafficking restrictions greatly compromised the efficiency of these conversions.  相似文献   

8.
Funk C  Croteau R 《Plant physiology》1993,101(4):1231-1237
(+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O2-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl2, camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn2+-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases.  相似文献   

9.
The volatile oil of mature Mentha piperita (peppermint) leaves contains as major components the oxygenated p-menthane monoterpenes l-menthol (47%) and l-menthone (24%) as well as very low levels of the monoterpene olefins limonene (1%) and terpinolene (0.1%), which are considered to be probable precursors of the oxygenated derivatives. Immature leaves, which are actively synthesizing monoterpenes, produce an oil with comparatively higher levels of limonene (approximately 3%), and isolation of the pure olefin showed this compound to consist of approximately 80% of the l-(4S)-enantiomer and approximately 20% of the d-(4R)-enantiomer. The time course of incorporation of [U-14C]sucrose into the monoterpenes of M. piperita shoot tips was consistent with the initial formation of limonene and its subsequent conversion to menthone via pulegone. d,l-[9-3H]Limonene and [9,10-3H]terpinolene were prepared and tested directly as precursors of oxygenated p-menthane monoterpenes in M. piperita shoot tips. Limonene was readily incorporated into pulegone, menthone, and other oxygenated derivatives, whereas terpinolene was not appreciably incorporated into these compounds. Similarly, d,l-[9-3H]limonene was specifically incorporated into pulegone in Mentha pulegium and into the C-2-oxygenated derivative carvone in Mentha spicata, confirming the role of this olefin as the essential precursor of oxygenated p-menthane monoterpenes. Soluble enzyme preparations from the epidermis of immature M. piperita leaves converted the acyclic terpenoid precursor [1-3H]geranyl pyrophosphate to limonene as the major cyclic product, providing a further indication that this olefin plays a central role in the formation of oxygenated monoterpenes in Mentha. No free intermediates were detected in the cyclization of geranyl pyrophosphate to limonene, suggesting that the olefin is the first cyclic intermediate to arise in the pathway, and resolution of the biosynthetic limonene, by crystallization of the derived d- and l-carvoximes, indicated an enantiomer mixture nearly identical to that isolated from the leaf oil.  相似文献   

10.
Hydroxyprolines are valuable chiral building blocks for organic synthesis of pharmaceuticals. Several microorganisms producing l-proline trans-4- and cis-3-hydroxylase were discovered and these enzymes were applied to the industrial production of trans-4- and cis-3-hydroxy-l-proline, respectively. Meanwhile, other hydroxyproline isomers, cis-4- and trans-3-hydroxy-l-proline, were not easily available because the corresponding hydroxylase have not been discovered. Herein we report novel l-proline cis-4-hydroxylases converting free l-proline to cis-4-hydroxy-l-proline. Two genes encoding uncharacterized proteins from Mesorhizobium loti and Sinorhizobium meliloti were cloned and overexpressed in Escherichia coli, respectively. The functions of purified proteins were investigated in detail, and consequently we detected l-proline cis-4-hydroxylase activity in both proteins. Likewise l-proline trans-4-, cis-3-hydroxylase and prolyl hydroxylase, these enzymes belonged to a 2-oxoglutarate dependent dioxygenase family and required a non-heme ferrous ion. Although their reaction mechanisms were similar to other hydroxylases, the amino acid sequence homology was not observed (less than 40%).  相似文献   

11.
Biotransformation of limonene by bacteria,fungi, yeasts,and plants   总被引:5,自引:0,他引:5  
The past 5 years have seen significant progress in the field of limonene biotransformation, especially with regard to the regiospecificity of microbial biocatalysts. Whereas earlier only regiospecific biocatalysts for the 1,2 position (limonene-1,2-diol) and the 8-position (alpha-terpineol) were available, recent reports describe microbial biocatalysts specifically hydroxylating the 3-position (isopiperitenol), 6-position (carveol and carvone), and 7-position (perillyl alcohol, perillylaaldehyde, and perillic acid). The present review also includes the considerable progress made in the characterization of plant P-450 limonene hydroxylases and the cloning of the encoding genes.  相似文献   

12.
Leaf disks from peppermint, spearmint, orange mint, lavender mint and Scotch spearmint were cultured on various Murashige-Skoog-based media in order to regenerate shoots. A significantly larger average number of orange mint leaf disks regenerated shoots on basal medium containing 44.4 M benzyladenine (BA) and 250 ml l-1 coconut water (CW). Shoots regenerated from peppermint leaf disks cultured on basal medium containing 44.4 M BA and 250 ml or 450 ml l-1 CW. The most shoots regenerated from orange mint leaf disks cultured on medium containing 10 g l-1 washed Difco Bacto-agar. Disks excised from the bases of the first expanding pair of orange mint leaves cultured under dark conditions regenerated a significantly larger average number of shoots. Histological studies suggested that shoots regenerated from the palisade parenchyma cells associated with vascular tissue.Abbreviations BA benzyladenine - NAA 1-naphthaleneacetic acid - TIBA 2,3,5-triiodobenzoic acid - CW coconut water  相似文献   

13.
Commercial peppermint (P) (Mentha × piperita L. ev. Black Mitcham), native spearmint (NS) (M. spicata L.) and Scotch spearmint (SS) (M. × gracillis Sole cv Baker) petioles and orange mint (OM) (M. citrata Ehrh.) leaf disks were cocultivated with a number of Agrobacterium tumefaciens strains. P, SS and OM initiated tumor-like callus tissue on growth regulator-free MS medium after cocultivation with strain A281, a hypervirulent agropine strain containing Ti plasmid pTiBo542. Callus did not initiate from explants cocultivated with strain C58, a virulent nopaline strain; with A 136, a plasmidless strain, or from uninoculated controls. A281-derived callus was maintained on growth regulator-free medium in the absence of antibiotics for up to two years with no bacterial outgrowth. No shoots regenerated from any of the tumors on regeneration medium. Five of seven OM callus lines assayed gave a positive signal for agropine. DNA extracted from OM tumor tissue hybridized to a DNA probe specific to the T-DNA region of pTi plasmid. Genomic Southern analysis of DNA from tumors of P and SS indicated that one to a few copies of the T-DNA integrated into the mint chromosomes. PCR amplification of genomic DNA with primers specific for one of the T-DNA encoded genes yielded fragments that, when analyzed by restriction enzyme mapping and on Southern blots, corresponded to the cytokinin biosynthesis gene ipt. These results demonstrate transformation of three species of mint and the potential for using A. tumefaciens to transfer economically important genes into commercial mint cultivars.Abbreviations BA benzyladenine - CW coconut water - Cef cefotaxime - P peppermint - SS scotch spearmint - NS native spearmint - OM orange mint - BM basal medium - MS Murashige and Skoog (1962) - PAR photosynthetically active radiation - CTAB hexadecylatrimethylammonium bromide - ipt isopentenyl transferase Received for publication 1994. Published as Miscellaneous Paper No. 1482 of the Delaware Agricultural Experiment Station. Contribution No. 317 of the Department of Plant and Soil Sciences. Mention of trade names in this publication does not imply endorsement by the Delaware Agricultural Experiment Station of products named, nor criticism of similar ones not named.  相似文献   

14.
Trypanocidal activity was found in the volatile oil of dried Dracocephalum kotschyi. GC-MS analysis determined that the major constituents of the oil were geranial (35.8%), C10H14O (26.6%), limonene (15.8%) and 1,1-dimethoxy decane (14.5%). In order to isolate the unknown biologically active monoterpene, fractionation of the volatile oil was carried out by silica gel column chromatography. The structure of the oxygenated compound was confirmed to be limonene-10-al (C10H14O) by analysis of physical and spectroscopic data (1H NMR, 13C NMR, HMBC and HMQC).  相似文献   

15.
16.
Wüst M  Croteau RB 《Biochemistry》2002,41(6):1820-1827
The regiochemistry and facial stereochemistry of the limonene-6-hydroxylase- (CYP71D18-) mediated hydroxylation of the monoterpene olefin limonene are determined by the absolute configuration of the substrate. (-)-(4S)-Limonene is hydroxylated at the C6 allylic position to give (-)-trans-carveol as the only product, whereas (+)-(4R)-limonene yields multiple hydroxylation products with (+)-cis-carveol predominating. Specifically deuterated limonene enantiomers were prepared to investigate the net stereospecificity of hydroxylation at C6 and the mechanism of multiple product formation. The results of isotopically sensitive branching experiments of competitive and noncompetitive design were consistent with a nondissociative kinetic mechanism, indicating that (4R)-limonene has sufficient freedom of motion within the active site of CYP71D18 to allow formation of either the trans-3- or cis-6-hydroxylated product. However, the kinetic isotope effects resulting from deuterium abstraction were significantly smaller than expected for an allylic hydroxylation, and they did not approach the intrinsic isotope effect. (4S)-Limonene is oxygenated with almost complete stereospecificity for hydrogen abstraction from the trans-6-position, demonstrating rigid orientation during hydrogen abstraction and hydroxyl delivery. The oxygenation of (4R)-limonene leading to the formation of (+/-)-trans-carveol is accompanied by considerable allylic rearrangement and stereochemical scrambling, whereas the formation of (+)-cis-carveol proceeds without allylic rearrangement and with nearly complete stereospecificity for hydrogen abstraction from the cis-6-position. These results demonstrate that a single cytochrome P450 enzyme catalyzes the hydroxylation of small antipodal substrates with distinct stereochemistries and reveal that substrate-dependent positional motion of the intermediate carbon radical (and, therefore, hydroxylation stereospecificity) is determined by active-site binding complementarity. Thus, epimerization and allylic rearrangement are not inherent features of these reactions but occur when loss of active-site complementarity allows increased substrate mobility.  相似文献   

17.
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (-)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1, 2-monooxygenase activity, a cofactor-independent limonene-1, 2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S, 4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R, 4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the beta-oxidation pathway.  相似文献   

18.
The genome of Rhodococcus jostii RHA1 contains an unusually large number of oxygenase encoding genes. Many of these genes have yet an unknown function, implying that a notable part of the biochemical and catabolic biodiversity of this Gram-positive soil actinomycete is still elusive. Here we present a multiple sequence alignment and phylogenetic analysis of putative R. jostii RHA1 flavoprotein hydroxylases. Out of 18 candidate sequences, three hydroxylases are absent in other available Rhodococcus genomes. In addition, we report the biochemical characterization of 3-hydroxybenzoate 6-hydroxylase (3HB6H), a gentisate-producing enzyme originally mis-annotated as salicylate hydroxylase. R. jostii RHA1 3HB6H expressed in Escherichia coli is a homodimer with each 47 kDa subunit containing a non-covalently bound FAD cofactor. The enzyme has a pH optimum around pH 8.3 and prefers NADH as external electron donor. 3HB6H is active with a series of 3-hydroxybenzoate analogues, bearing substituents in ortho- or meta-position of the aromatic ring. Gentisate, the physiological product, is a non-substrate effector of 3HB6H. This compound is not hydroxylated but strongly stimulates the NADH oxidase activity of the enzyme.  相似文献   

19.
Mature trees of eastern white, jack, Scotch, and shortleaf pines were inoculated with 25,000-34,000 pinewood nematodes, Bursaphelenchus xylophilus, isolated from infected Scotch pines in Missouri. Equal numbers of trees of each species inoculated with distilled water served as controls. Nine of fifteen Scotch pines died within 4 months of nematode infection or during the winter and early spring following infection. A single eastern white and shortleaf pine died. No jack pines died. A single Scotch pine control died, apparently the result of natural nematode infection. No other controls died. Mean oleoresin flow did not differ among nematode-inoculated jack and shortleaf pines and their respective controls. Oleoresin flow in nematode-inoculated eastern white and Scotch pines was significantly lower than in their controls. Oleoresin flow was temporarily reduced in mortality-resistant eastern white and Scotch pines following nematode infection. Thus a sublethal impact of nematode infection on mortality-resistant host trees was documented.  相似文献   

20.
The biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway (Carum carvi L.) proceeds from geranyl diphosphate via a three-step pathway. First, geranyl diphosphate is cyclized to (+)-limonene by a monoterpene synthase. Second, this intermediate is stored in the essential oil ducts without further metabolism or is converted by limonene-6-hydroxylase to (+)-trans-carveol. Third, (+)-trans-carveol is oxidized by a dehydrogenase to (+)-carvone. To investigate the regulation of monoterpene formation in caraway, we measured the time course of limonene and carvone accumulation during fruit development and compared it with monoterpene biosynthesis from [U-14C]Suc and the changes in the activities of the three enzymes. The activities of the enzymes explain the profiles of monoterpene accumulation quite well, with limonene-6-hydroxylase playing a pivotal role in controlling the nature of the end product. In the youngest stages, when limonene-6-hydroxylase is undetectable, only limonene was accumulating in appreciable levels. The appearance of limonene-6-hydroxylase correlates closely with the onset of carvone accumulation. At later stages of fruit development, the activities of all three enzymes declined to low levels. Although this correlates closely with a decrease in monoterpene accumulation, the latter may also be the result of competition with other pathways for substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号