首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Protein Synthesis in Dormant and Non-Dormant Cocklebur Seed Segments   总被引:1,自引:0,他引:1  
Using the axial and cotyledonary segments of lower cocklebur (Xanthium pensylvanicum Wallr.) seeds, protein synthesis as shown by incorporation of radioactive leucine was examined in relation to their dormant status. During the first 9 h of water imbibition, the protein synthesis was higher in the dormant axes than in the non-dormant, after- ripened ones. When imbibed for more than 12 h non-dormant axes had a higher activity than dormant ones. This was also the case with the cotyledonary segments. Cyctoheximide, an inhibitor of protein synthesis, blocked protein synthesis in the axial tissue regardless of its dormant status, and thereby inhibited germination of the non-dormant seeds. In the dormant seeds, however, cycloheximide at 3 mM slightly stimulated germination without stimulating the C2H4 production. Based on these results, it is suggested that in cocklebur seeds there may be some proteinaceous system which is involved in the maintenance of dormancy.  相似文献   

2.
Summary C2H4 production of the embryonic axes and cotyledons excised from dormant and non-dormant cocklebur (Xanthium pennsylvanicum Wallr.) seeds was examined in relation to ambient O2 tensions. There were two kinds of C2H4-producing systems, quasi-anaerobic and aerobic, in both organs. Regardless of the organ, the former activity was high in the dormant state and, particularly in axes, declined with after-ripening. On the other hand, the latter activity was almost insignificant in the dormant state, but increased with release from dormancy and the non-dormant axes exclusively produced C2H4 through this system. In the cotyledons, however, the former was still predominant even after they were fully after-ripened. Thus, the C2H4-producing systems were different in the seed organ and in the dormancy state.  相似文献   

3.
The endogenous levels of GA1, GA3, GA4, GA7, GA8, GA9, GA19 and GA20 were determined in beech seeds (Fagus sylvatica L.) treated with different dormancy breaking treatments. Gibberellins were analysed separately in cotyledons and embryo axes. After purification of the extracts, GAs were quantified by GC-MS-selected ion monitoring (GC-MS-SIM) with deuterated GAs as internal standards. The results showed that GAs corresponding to the 13-OH pathway seemed to be involved in dormancy breaking. Strong differences in GA1, GA3, GA8, GA19 and GA20 levels between embryo axes and cotyledons of dormant and non-dormant beechnuts were detected with less pronounced differences for GA4, GA7 and GA9 levels. Both the quantitative differences between dormant and non-dormant seeds in the analysed GAs corresponding to the 13-OH pathway, and the capacity of non-dormant seeds to carry out metabolic conversions when labelled GA20 was injected into the seeds, reveal a dynamic role of GAs in dormancy release.  相似文献   

4.
The mechanism of emergence from primary dormancy, the process of after-ripening, in cocklebur (Xanthium pennsylvanicum) seeds was examined in relation to the involvement of volatile compounds and to the relative humidity (RH) in which the seeds were stored. The after-ripening of these seeds proceeds only at water contents between 7 and 14% which are conditioned under RHs of 33% to 53% and are identified with water-binding region II. After-ripening of cocklebur seeds occurred even in water-binding region I. imposed by 12% RH. when exposed to HCN gas during the storage period. Exposure of dormant seeds to acetaldehyde (ethanal) retarded after-ripening. even in water-binding region II. thus decreasing germinability. This decrease of germinability by ethanal was found also in the after-ripened seeds, suggesting that ethanal accelerates seed deterioration rather than retarding the after-ripening. The contents of ethanal. ethanal and HCN were high only in the dormant seeds held at 12% RH. Regardless of RH. a possible conversion of ethanal to ethanol. perhaps via alcohol dehydrogenase. was far larger in dormant than in non-dormant seeds. In contrast, the reverse conversion of ethanol to ethanal was more profound in non-dormant seeds. Pre-exposure of both types of seeds to HCN reduced the contents of both ethanal and ethanol at 12% RH. The contents of various adenylales including ATP in seed tissues were higher in dormant seeds stored at 12% RH than in non-dormant seeds after-ripened at 44% RH. It is suggested that emergence of cocklebur seeds from primary dormancy by HCN treatment at 12% RH may result from the reduction in the contents of ethanal via an unknown mechanism incurring the consumption of ATP. This implies involvement of volatile compound metabolism at the water-binding region II in the after-ripening process of cocklebur seeds.  相似文献   

5.
Summary The discrimination between the isotopes of hydrogen in the reaction catalyzed by yeast phosphoglucoisomerase is examined by NMR, as well as by spectrofluorometric or radioisotopic methods. The monodirectional conversion of D-glucose 6-phosphate to D-fructose 6-phosphate displays a lower maximal velocity with D-[2-2H]glucose 6-phosphate than unlabelled D-glucose 6-phosphate, with little difference in the affinity of the enzyme for these two substrates. About 72% of the deuterium located on the C2 of D-[1-13C,2-2H]glucose 6-phosphate is transferred intramolecularly to the C1 of D-[1-13C,1-2H]fructose 6-phosphate. The velocity of the monodirectional conversion of D-[U-14C]glucose 6-phosphate (or D-[2-3H]glucose 6-phosphate) to D-fructose 6-phosphate is virtually identical in H2O and D2O, respectively, but is four times lower with the tritiated than 14C-labelled ester. In the monodirectional reaction, the intramolecular transfer from the C2 of D-[2-3H]glucose 6-phosphate is higher in the presence of D2O than H2O. Whereas prolonged exposure of D-[1-13C]glucose 6-phosphate to D2O, in the presence of phosphoglucoisomerase, leads to the formation of both D-[1-13C,2-2H]glucose 6-phosphate and D-[1-13C,1-2H]fructose 6-phosphate, no sizeable incorporation of deuterium from D2O on the C1 of D-[1-13C]fructose 1,6-bisphosphate is observed when the monodirectional conversion of D-[1-13C]glucose 6-phosphate occurs in the concomitant presence of phosphoglucoisomerase and phosphofructokinase. The latter finding contrasts with the incorporation of hydrogen from 1H2O or tritium from 3H2O in the monodirectional conversion of D-[2-3H]glucose 6-phosphate and unlabelled D-glucose 6-phosphate, respectively, to their corresponding ketohexose esters.  相似文献   

6.
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose.  相似文献   

7.
Insulin stimulated phosphorylation of tyrosine residues by the insulin receptor kinase may be part of a signalling mechanism associated with insulin's action. We report that indomethacin inhibited the phosphorylation of the -subunit of the solubilized adipocyte insulin receptor. Indomethacin also inhibited several insulin-sensitive processes in intact rat adipocytes. Indomethacin (1 mM) inhibited basal phosphorylation of the -subunit of the solubilized insulin receptor by 6007o and insulin-stimulated phosphorylation by 30%. In adipocytes, indomethacin inhibited basal 3-0-[methyl-14C]-methyl-D glucose transport by 50070 (P < 0.01), D-[6-14C]-glucose oxidation by 5007o (P < 0.01), D-[6-14C]-glucose conversion to lipid by 30010 (P < 0.01), and D-[1-14C]-glucose conversion to lipid by 6007o (P<0.01). Similarly, indomethacin inhibited insulin-stimulated 3-0-[methyl-14C]-methyl-D-glucose transport by 75070 (P<0.01), D-[6-14C]-glucose oxidation by 20% (P<0.05), D-[1-14C]-glucose oxidation by 35070 (P<0.01), D-[6-14C] glucose conversion to lipid by 25010 (P<0.01), and D-[1-14C] glucose conversion to lipid by 4501o (P<0.01). In contrast, insulin binding to its receptor, basal D-[1-14C]-glucose oxidation and both basal and insulin-stimulated activation of glycogen synthase were unaffected by indomethacin. Thus, indomethacin partially inhibited autophosphorylation of the solubilized insulin receptor on tyrosine and partially inhibited some but not all of insulin's actions. This supports the hypothesis that insulin's metabolic effects are linked to activation of the insulin receptor protein kinase and indicates that there may be heterogeneity in the mechanisms of intracellular metabolic control by insulin.  相似文献   

8.
Growth of segments of embryonic axes and cotyledons excisedfrom dormant or nondormant cocklebur (Xanthium pennsylvanicumWallr.) seeds and CO2 and C2H4 production in these segmentswere examined in relation to the effects of temperature, CO2and C2H4. Both the nondormant axes and cotyledons grew evenat low temperatures below 23°C, but the dormant ones failedto grow. There was only little difference in the CO2 evolutionbetween the nondormant and dormant ones, but both the axis andcotyledon segments from the dormant seeds exhibited little orno C2H4 productivity, unlike the nondormant ones, at low temperatures.However, a high temperature of 33°C caused rapid extensiongrowth and C22H4 production even in dormant axes and cotyledons. The inability of dormant axes and cotyledons to grow disappearedcompletely in the presence of C2H4 at fairly low concentrations.Removal of endogenous CO2 and C2H4 reduced the growth in bothaxes and cotyledons, while exogenous CO2 mainly enhaced axialgrowth although exogenous C2H4 strongly stimulated the growthof both organs. Regardless of the dormant status, however, maximumgrowth of these organs occurred when C2H4 was given togetherwith CO2. We suggest that dormancy in cocklebur seeds is dueto the lack of growing ability in both organs, caused by thelack of C2H4 productivity in both dormant axes and cotyledons,particularly in the former. (Received December 2, 1974; )  相似文献   

9.
Non-dormant and dormant seeds of Avena fatua metabolize 14C-maltose in different ways: in non-dormant seeds, 14C-maltose administered to the endosperm is readily converted to sucrose in the scutellum and translocated to the embryo; in dormant seeds, little sucrose is synthesized from 14C-maltose, and maltose and glucose tend to accumulate in the endosperm. It is suggested that biosynthesis of sucrose is essential for effective transport of the endosperm reserve to the embryonic axis in germinating seeds.  相似文献   

10.
Intact caeca of the marine borer, Bankia setacea (Tryon), were incubated in vitro with (1-14C)- and (6-14C)-glucose. The specific yields of 14CO2 from (1-14C)- and (6-14C)-glucose were found to be 9 and 1% respectively. From these values the contribution of the pentose cycle to the overall glucose metabolism was calculated as 3%. Glucose is catabolized mainly via the Embden-Meyerhof pathway.  相似文献   

11.
Changes in activities of the glycolytic and pentose phosphate (PP) pathways in glucose catabolism in various parts of the hypocotyls obtained from 4-day-old etiolatedPhaseolus mungo seedlings were investigated by measuring the inhibition rates of respiration by iodoacetate and malonate, and the release of14CO2 from [1-14C]- and [6-14C]glucose. The relative activity of the PP pathway in glucose catabolism was higher in the immature part (Part I) and the aged part (Part V) of the hypocotyls than in the intermediary one (Part III), while the activity of the glycolytic pathway decreased with aging. On a fresh weight basis, the enzyme activities of the glycolytic and PP pathways were higher in Part I than in Parts III and V. On a protein content basis, however, activities of the enzymes of the PP pathway increased with aging and differentiation of the hypocotyls whereas those of the glycolytic pathway decreased. Levels of nicotinamide adenine nucleotides were found to be in the following order: Part I>Part III> Part V for NAD++NADH; Part I>Part V>Part III for NADP++NADPH. The stimulative effect of methylene blue on decreasing the C6/C1 ratio was greater in Part III than in Part I, and No effect was observed in Part V. These data suggest that a decrease in the activity of the glycolytic pathway with aging and differentiation may be due to the decreasing glycolytic enzyme activities and NAD(H) content. The higher activity of the PP pathway in the immature part is attributable to larger amounts of NADP(H) and enzymes of the PP pathway. The greater contribution of the PP pathway to glucose catabolism in the aged part than in the intermediary part seems to results from a more active turnover of NADP and the relatively higher activity of the enzymes of the PP pathway than those of the glycolytic pathway.  相似文献   

12.
A mixture of [2-14C1] and [13C6]indole-3-acetic acid was applied to the cotyledons of 6-day-germinated seeds of “jacarandá do cerrado” (Dalbergia dolichopetala) and after 8 hours the seeds were extracted. Analysis of the fractionated extract by reversed-phase high performance liquid chromatography-radiocounting revealed the presence of five radiolabeled metabolite peaks (I-V). After further purification, the individual peaks of radioactivity were analyzed by combined high performance liquid chromatography-steel filter-fast atom bombardment-mass spectrometry. The metabolite fraction V was found to contain [14C1, 13C6]indole-3-acetylas-partic acid and unlabeled indole-3-acetylglutamic acid. Analysis of the metabolite fraction II revealed the presence of dioxindole-3-acetylaspartic acid and putative dioxindole-3-acetylglutamic acid as well as putative benzene ring-hydroxylated derivatives of oxindole-3-acetylaspartic acid and oxindole-3-acetylglutamic acid. There was no evidence of significant incorporation of label from [2′-14C1] or [13C6]indole-3-acetic acid into any of these conjugated indoles.  相似文献   

13.
Dormant Amaranthus retroflexus seeds do not germinate in the dark at temperatures below 35°C. Fully dormant seeds germinate only at 35–40°C whereas non-dormant ones germinate within a wider range of temperatures (15 to 40°C). Germination of non-dormant seeds requires at least 10% oxygen, but the sensitivity of seeds to oxygen deprivation increases with increasing depth of dormancy. 10–6 to 10–4 M ethephon, 10–3 M 1-aminocyclopropane 1-carboxylic acid (ACC) and 10–3 M gibberellic acid (GA3) break this dormancy. In the presence of 10–3 M GA3 dormant seeds are able to germinate in the same range of temperatures as non-dormant seeds. The stimulatory effect of GA3 is less dependent on temperature than that of ethephon, while ACC stimulates germination only at relatively high temperatures (25–30°C). The results obtained are discussed in relation to the possible involvement of endogenous ethylene in the regulation of germination of A. retroflexus seeds.Abbreviations ACC 1-aminocyclopropane 1-carboxylic acid - GA3 gibberellic acid - SD standard deviation  相似文献   

14.
The pathway (s) of glucose degradation in detached senescent and non-senescent tobacco leaves from plants approximately 100 days old were studied utilizing‘Relabeled carbohydrates. Comparable samples of each tissue were allowed to metabolize glucose-1- and glucose-6-14C and C6/C1 ratios were computed from the radioactivity of 14CO2 collected. Two methods of calculation were compared. Hexose monophosphate pathway activity was also compared in both ages of tissue by measuring 14CO2 respired from substrate ribose-1-, xylose-1- and gluconic acid-6-14C. The results indicate that the hexose monophosphate pathway accounts for approximately 25 percent of the respired CO2 in both senescent and non-senescent tissues. Both types of tissue were equally efficient in degrading HMP shunt intermediates to CO2.  相似文献   

15.
d-Glucose catabolism of a phosphofructokinase-deficient yeast Rhodotorula gracilis has been studied. By using d-glucose specifically 14C-labelled at different positions and measuring the distribution of the label in various fractions of cell metabolism, the following results were found. 1. The pentose phosphate pathway, being the main pathway of d-glucose catabolism, simultaneously converts glucose molecules into pentose phosphates oxidatively by using two NADP-linked dehydrogenases and via the non-oxidative transketolase–transaldolase pathway. 2. From the correlation of the 14CO2 liberation and the d-glucose consumption and from the fact that the pentose phosphate moiety in nucleic acids is almost equally labelled from d-[1-14C]- and d-[6-14C]-glucose, it is concluded that of the glucose utilized about 80% undergoes transformation via the non-oxidative pentose phosphate pathway. Only about 20% of glucose is directly decarboxylated to pentose phosphate. 3. For further degradation it is postulated that the pentose phosphates are split into C2 fragments and glyceraldehyde 3-phosphates. 4. All three loci of oxidative decarboxylation appear to be effective in Rh. gracilis, the oxidative part of the pentose phosphate pathway, the decarboxylation of pyruvate in the later part of the glycolytic pathway as well as the oxidation in the tricarboxylic acid cycle. 5. d-Glucose molecules taken up are only partially oxidized to CO2: about four-fifths of each glucose molecule metabolized is incorporated into cell constituents. 6. The quantitative interrelations of the fluxes of d-glucose subunits along the catabolic pathways have been estimated and are discussed.  相似文献   

16.
Summary The exchange of protons and deuterons by phosphoglucoisomerase during the single passage conversion of D-[2-13C,1-2H]fructose 6-phosphate in H2O or D-[2-13C]fructose 6-phosphate in D2O to D-[2-13C]glucose 6-phosphate, as coupled with the further generation of 6-phospho-D-[2-13C]gluconate in the presence of excess glucose-6-phosphate dehydrogenase was investigated by 13C NMR spectroscopy of the latter metabolite. In H2O, the intramolecular deuteron transfer from the C1 of D-fructose 6-phosphate to the C2 of D-glucose 6-phosphate amounted to 65%, a value only slightly lower than the 72% intramolecular proton transfer in D2O. Both percentages, especially the latter one, were lower than those previously recorded during the single passage conversion of D-[1-13C,2-2H]glucose 6-phosphate in H2O or D-[1-13C]glucose 6-phosphate in D2O to D-fructose 6-phosphate and then to D-fructose 1,6-bisphosphate. These differences indicate that the sequence of interactions between the hexose esters and the binding sites of phosphoglucoisomerase is not strictly in mirror image during, respectively, the conversion of the aldose phosphate to ketose phosphate and the opposite process.  相似文献   

17.
Changes in the level of nicotinamide nucleotides, rate of 14CO2output from [1–14C] or [614 C6/C1 ratios, glucose-6-phosphatedehydrogenase, 6-phosphogluconate dehydrogenase, and NAD kinaseactivities were determined during the first 72 h of germinationof seeds of Cicer arietinum L. The level of oxidized and reducedforms of nicotinamide nucleotides, together with the activityof glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase,NAD kinase, and C6/C1 ratios, suggest that the pentose phosphatepathway is activated during early germination in cotyledonsof chick pea seeds. The results obtained in embryonic axes seemsto indicate a lower participation of the PP pathway, probablydue to the development of the activity of the glycolytic-TCApathway.  相似文献   

18.
Abstract. Germination modes of lower seeds of cocklebur (Xanthium pennsylvanicum Wallr.) under different water stresses, prepared with mannitol solution, were examined in relation to gaseous factors. As the concentration of mannitol increased, germination was increasingly inhibited at a mode which was drawn by two straight lines having different slopes and meeting at an angle. One is a sharp line occurring at the lower concentrations of mannitol; the other is a gentle line occurring at higher concentrations of mannitol. The former reflected the growth response of axial tissues to mild water stress, whereas the latter reflected the growth response of cotyledonary tissues to severe water stress. The germination potential of cocklebur seeds increased with increasing temperature. Thus, the seeds were more resistant to water stress at higher than al lower temperatures. This increased germination potential under water stress resulted from the greater growth potential of axial tissues, but not cotyledonary tissues, at higher temperature. Increased O2 levels improved both the reduced axial and cotyledonary growth under water stress. Carbon dioxide predominantly enhanced axial growth under water stress, whereas C2H4 exclusively enhanced cotyledonary growth. Thus, these gases were effective in potentiating germination under water stress. When combined with each other, these gases caused more pronounced growth of the axial and cotyledonary tissues, leading to germination under more severe water stresses. Maximal axial and cotyledonary growth under water stress occurred in the simultaneous presence of CO2, C2H4 and O2, which allowed the germination at higher mannitol concentrations above 0.6 kmol m?3 From these results, it was suggested that cocklebur seeds would override water stress by depending upon both the Corresponding axial growth and the C2H4-responding cotyledonary growth.  相似文献   

19.
Isolated hepatocytes from fed rats were exposed for 120 min to D-glucose (10 mM) and either D-[1-13C]fructose, D-[2-13C]fructose or D-[6-13C]fructose (also 10 mM) in the presence of D2O. The identification and quantification of 13C-enriched D-fructose and its metabolites (D-glucose, L-lactate, L-alanine) in the incubation medium and the measurement of their deuterated isotopomers indicated, by comparison with a prior study conducted in the absence of exogenous D-glucose, that the major effects of the aldohexose were to increase the recovery of 13C-enriched D-fructose, decrease the production of 13C-enriched D-glucose, restrict the deuteration of the 13C-enriched isotopomers of D-glucose to those generated by cells exposed to D-[2-13C]fructose, and to accentuate the lesser deuteration of the C2 (as compared to C5) of 13C-enriched D-glucose derived from D-[2-13C]fructose. The ratio between C2-deuterated and C2-hydrogenated L-lactate, as well as the relative amounts of the CH3-, CH2D-, CHD2 and CD3- isotopomers of 13C-enriched L-lactate were not significantly different, however, in the absence or presence of exogenous D-glucose. These findings indicate that exogenous D-glucose suppressed the deuteration of the C1 of D-[1-13C]glucose generated by hepatocytes exposed to D-[1-13C]fructose or D-[6-13C]fructose, as otherwise attributable, in part at least, to gluconeogenesis from fructose-derived [3-13C]pyruvate, and apparently favoured the phosphorylation of D-fructose by hexokinase isoenzymes, probably through stimulation of D-fructose phosphorylation by glucokinase.  相似文献   

20.
Grappin P  Bouinot D  Sotta B  Miginiac E  Jullien M 《Planta》2000,210(2):279-285
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA3) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA3 in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA3 inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds. Received: 31 December 1998 / Accepted: 9 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号