首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Preferential binding of human topoisomerase I to superhelical DNA.   总被引:4,自引:1,他引:3       下载免费PDF全文
K R Madden  L Stewart    J J Champoux 《The EMBO journal》1995,14(21):5399-5409
  相似文献   

2.
Affinity of protein HU for different nucleic acids   总被引:8,自引:0,他引:8  
A Holck  K Kleppe 《FEBS letters》1985,185(1):121-124
The binding of protein HU from Escherichia coli to nucleic acids was investigated by affinity chromatography under various conditions, by a nitrocellulose retention assay and by isopycnic centrifugations in metrizamide gradients. The results indicate that HU has a preference for binding to RNA and single-stranded DNA over double-stranded DNA. The affinity of HU for supercoiled DNA was also less than that of the corresponding relaxed DNA.  相似文献   

3.
Pur alpha is a single-stranded (ss) DNA- and RNA-binding protein with three conserved signature repeats that have a specific affinity for guanosine-rich motifs. Pur alpha unwinds a double-stranded oligonucleotide containing purine-rich repeats by maintaining contact with the purine-rich strand and displacing the pyrimidine-rich strand. Mutational analysis indicates that arginine and aromatic residues in the repeat region of Pur alpha are essential for both ss- and duplex DNA binding. Pur alpha binds either linearized or supercoiled plasmid DNA, generating a series of regularly spaced bands in agarose gels. This series is likely due to localized unwinding by quanta of Pur alpha since removal of Pur alpha in the gel eliminates the series and since Pur alpha binding increases the sensitivity of plasmids to reaction with potassium permanganate, a reaction specific for unwound regions. Pur alpha binding to linear duplex DNA creates binding sites for the phage T4 gp32 protein, an ss-DNA binding protein that does not itself bind linearized DNA. In contrast, Pur beta lacking the Pur alpha C-terminal region binds supercoiled DNA but not linearized DNA. Similarly, a C-terminal deletion of Pur alpha can bind supercoiled pMYC7 plasmid, but cannot bind the same linear duplex DNA segment. Therefore, access to linear DNA initially requires C-terminal sequences of Pur alpha.  相似文献   

4.
Efficient repression of the two promoters P1 and P2 of the gal operon requires the formation of a DNA loop encompassing the promoters. In vitro, DNA looping-mediated repression involves binding of the Gal repressor (GalR) to two gal operators (OE and OI) and binding of the histone-like protein HU to a specific locus (hbs) about the midpoint between OE and OI, and supercoiled DNA. Without DNA looping, GalR binding to OE partially represses P1 and stimulates P2. We investigated the requirement for DNA supercoiling and HU in repression of the gal promoters in vivo in strains containing a fusion of a reporter gene, gusA or lacZ, to each promoter individually. While the P1 promoter was found to be repressible in the absence of DNA supercoiling and HU, the repression of P2 was entirely dependent upon DNA supercoiling in vivo. The P2 promoter was fully derepressed when supercoiling was inhibited by the addition of coumermycin in cells. P2, but not P1, was also totally derepressed by the absence of HU or the OI operator. From these results, we propose that the repression of the gal promoters in vivo is mediated by the formation of a higher order DNA-multiprotein complex containing GalR, HU and supercoiled DNA. In the absence of this complex, P1 but not P2 is still repressed by GalR binding to OE. The specific nucleoprotein complexes involving histone-like proteins, which repress promoter activity while remaining sensitive to inducing signals, as discussed, may occur more generally in bacterial nucleoids.  相似文献   

5.
HU, a major component of the bacterial nucleoid, shares properties with histones, high mobility group proteins (HMGs), and other eukaryotic proteins. HU, which participates in many major pathways of the bacterial cell, binds without sequence specificity to duplex DNA but recognizes with high affinity DNA repair intermediates. Here we demonstrate that HU binds to double-stranded DNA, double-stranded RNA, and linear DNA-RNA duplexes with a similar low affinity. In contrast to this nonspecific binding to total cellular RNA and to supercoiled DNA, HU specifically recognizes defined structures common to both DNA and RNA. In particular HU binds specifically to nicked or gapped DNA-RNA hybrids and to composite RNA molecules such as DsrA, a small non-coding RNA. HU, which modulates DNA architecture, may play additional key functions in the bacterial machinery via its RNA binding capacity. The simple, straightforward structure of its binding domain with two highly flexible beta-ribbon arms and an alpha-helical platform is an alternative model for the elaborate binding domains of the eukaryotic proteins that display dual DNA- and RNA-specific binding capacities.  相似文献   

6.
RecA protein promotes two distinct types of synaptic structures between circular single strands and duplex DNA; paranemic joints, where true intertwining of paired strands is prohibited and the classically intertwined plectonemic form of heteroduplex DNA. Paranemic joints are less stable than plectonemic joints and are believed to be the precursors for the formation of plectonemic joints. We present evidence that under strand exchange conditions the binding of HU protein, from Escherichia coli, to duplex DNA differentially affects homologous pairing in vitro. This conclusion is based on the observation that the formation of paranemic joint molecules was not affected, whereas the formation of plectonemic joint molecules was inhibited from the start of the reaction. Furthermore, introduction of HU protein into an ongoing reaction stalls further increase in the rate of the reaction. By contrast, binding of HU protein to circular single strands has neither stimulatory nor inhibitory effect. Since the formation of paranemic joint molecules is believed to generate positive supercoiling in the duplex DNA, we have examined the ability of positive superhelical DNA to serve as a template in the formation of paranemic joint molecules. The inert positively supercoiled DNA could be converted into an active substrate, in situ, by the action of wheat germ topoisomerase I. Taken collectively, these results indicate that the structural features of the bacterial chromosome which include DNA supercoiling and organization of DNA into nucleosome-like structures by HU protein modulate homologous pairing promoted by the nucleoprotein filaments of recA protein single-stranded DNA.  相似文献   

7.
The histone-like HU (heat unstable) protein plays a key role in the organization and regulation of the Escherichia coli genome. The nonspecific nature of HU binding to DNA complicates analysis of the mechanism by which the protein contributes to the looping of DNA. Conventional models of the looping of HU-bound duplexes attribute the changes in biophysical properties of DNA brought about by the random binding of protein to changes in the effective parameters of an ideal helical wormlike chain. Here, we introduce a novel Monte Carlo approach to study the effects of nonspecific HU binding on the configurational properties of DNA directly. We randomly decorated segments of an ideal double-helical DNA with HU molecules that induce the bends and other structural distortions of the double helix find in currently available X-ray structures. We find that the presence of HU at levels approximating those found in the cell reduces the persistence length by roughly threefold compared with that of naked DNA. The binding of protein has particularly striking effects on the cyclization properties of short duplexes, altering the dependence of ring closure on chain length in a way that cannot be mimicked by a simple wormlike model and accumulating at higher-than-expected levels on successfully closed chains. Moreover, the uptake of protein on small minicircles depends on chain length, taking advantage of the HU-induced deformations of DNA structure to facilitate ligation. Circular duplexes with bound HU show much greater propensity than protein-free DNA to exist as negatively supercoiled topoisomers, suggesting a potential role of HU in organizing the bacterial nucleoid. The local bending and undertwisting of DNA by HU, in combination with the number of bound proteins, provide a structural rationale for the condensation of DNA and the observed expression levels of reporter genes in vivo.  相似文献   

8.
P Wu  J M Schurr 《Biopolymers》1989,28(10):1695-1703
The magnitude and uniformity of the torsion elastic constant (alpha) of linear and supercoiled pBR322 DNAs are measured in 3 mM Tris as a function of added chloroquine/basepair ratio (chl/bp) by studying the fluorescence polarization anisotropy of intercalated ethidium dye. The time-resolved FPA is measured using a picosecond dye-laser for excitation and time-correlated single-photon counting detection. For both linear and supercoiled DNAs, alpha remains uniform except at the very highest chl/bp ratio examined. For the linear DNA, alpha decreases from 5.0 x 10(-12) dyne-cm at chl/bp = 0 to about 3.5 x 10(-12) dyne-cm at chl/bp = 0.5, and remains at that value up to chl/bp = 5, whereupon it increases back up to its original value. For the supercoiled DNA, alpha remains constant at about 5.2 x 10(-12) dyne-cm from chl/bp = 0 up to chl/bp = 5, whereupon it increases in parallel with the linear DNA. The effect of chloroquine on the secondary structure, torsion constant, and torsional dynamics evidently differs substantially between linear and supercoiled DNAs, even under conditions where the supercoiled DNA is completely relaxed and both DNAs bind the same amount of dye. This strongly contradicts any notion that the local structures of linear and relaxed supercoiled DNA/dye complexes with the same binding ratio are identical. The increase in apparent alpha at chl/bp = 5 for both DNAs may be due to stacking of the chloroquine in the major groove and consequent stiffening of the filament.  相似文献   

9.
Binding of anti-Z-DNA antibodies to negatively supercoiled SV40 DNA.   总被引:1,自引:0,他引:1  
The binding of anti-Z-DNA antibody preparations to negatively supercoiled, protein-free SC40 DNA was analyzed. Covalent cross-linking with 0.1% glutaraldehyde followed by DNA restriction endonucleolytic fragmentation and nitrocellulose filtration allowed accurate mapping of antibody binding sites. The critical superhelical density necessary to allow antibody binding was -sigma = 0.056. The major region of antibody-DNA interaction was found within an SV40 segment spanning viral map positions 40 to 474. This region coincides with the nucleosome free region in SV40 minichromosomes and harbours the early and late promoter regions including the SV40 enhancer segment. Although it is unknown whether alternative, non-B-DNA conformations are generated in vivo within SV40 minichromosomes our results emphasize the high degree of DNA structural flexibility that can be realized under negative torsional stress.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号