首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called “the dual intertwined rings architecture”) that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or “corticotopy”). Recent results suggest that the resting state networks (RSNs) are organized into two large families: 1) a sensorimotor family that includes visual, somatic, and auditory areas and 2) a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1) the RSN functional roles by using a projection of the results on task based networks (TBNs) as referenced in large databases of fMRI activation studies; and (2) relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring). The second ring integrates distant parietal, temporal and frontal regions (PTF ring) through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This “dual intertwined architecture” suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi-temporal integration (i.e., relates past, present, and future representations at different temporal scales).  相似文献   

2.
The human brain has been documented to be spatially organized in a finite set of specific coherent patterns, namely resting state networks (RSNs). The interactions among RSNs, being potentially dynamic and directional, may not be adequately captured by simple correlation or anticorrelation. In order to evaluate the possible effective connectivity within those RSNs, we applied a conditional Granger causality analysis (CGCA) to the RSNs retrieved by independent component analysis (ICA) from resting state functional magnetic resonance imaging (fMRI) data. Our analysis provided evidence for specific causal influences among the detected RSNs: default-mode, dorsal attention, core, central-executive, self-referential, somatosensory, visual, and auditory networks. In particular, we identified that self-referential and default-mode networks (DMNs) play distinct and crucial roles in the human brain functional architecture. Specifically, the former RSN exerted the strongest causal influence over the other RSNs, revealing a top-down modulation of self-referential mental activity (SRN) over sensory and cognitive processing. In quite contrast, the latter RSN was profoundly affected by the other RSNs, which may underlie an integration of information from primary function and higher level cognition networks, consistent with previous task-related studies. Overall, our results revealed the causal influences among these RSNs at different processing levels, and supplied information for a deeper understanding of the brain network dynamics.  相似文献   

3.
Spatial patterns of coherent activity across different brain areas have been identified during the resting-state fluctuations of the brain. However, recent studies indicate that resting-state activity is not stationary, but shows complex temporal dynamics. We were interested in the spatiotemporal dynamics of the phase interactions among resting-state fMRI BOLD signals from human subjects. We found that the global phase synchrony of the BOLD signals evolves on a characteristic ultra-slow (<0.01Hz) time scale, and that its temporal variations reflect the transient formation and dissolution of multiple communities of synchronized brain regions. Synchronized communities reoccurred intermittently in time and across scanning sessions. We found that the synchronization communities relate to previously defined functional networks known to be engaged in sensory-motor or cognitive function, called resting-state networks (RSNs), including the default mode network, the somato-motor network, the visual network, the auditory network, the cognitive control networks, the self-referential network, and combinations of these and other RSNs. We studied the mechanism originating the observed spatiotemporal synchronization dynamics by using a network model of phase oscillators connected through the brain’s anatomical connectivity estimated using diffusion imaging human data. The model consistently approximates the temporal and spatial synchronization patterns of the empirical data, and reveals that multiple clusters that transiently synchronize and desynchronize emerge from the complex topology of anatomical connections, provided that oscillators are heterogeneous.  相似文献   

4.
Resting‐state functional magnetic resonance imaging (rs‐fMRI) has been successfully used to probe the intrinsic functional organization of the brain and to study brain development. Here, we implemented a combination of individual and group independent component analysis (ICA) of FSL on a 6‐min resting‐state data set acquired from 21 naturally sleeping term‐born (age 26 ± 6.7 d), healthy neonates to investigate the emerging functional resting‐state networks (RSNs). In line with the previous literature, we found evidence of sensorimotor, auditory/language, visual, cerebellar, thalmic, parietal, prefrontal, anterior cingulate as well as dorsal and ventral aspects of the default‐mode‐network. Additionally, we identified RSNs in frontal, parietal, and temporal regions that have not been previously described in this age group and correspond to the canonical RSNs established in adults. Importantly, we found that careful ICA‐based denoising of fMRI data increased the number of networks identified with group‐ICA, whereas the degree of spatial smoothing did not change the number of identified networks. Our results show that the infant brain has an established set of RSNs soon after birth.  相似文献   

5.
In the premature infant, somatosensory and visual stimuli trigger an immature electroencephalographic (EEG) pattern, “delta-brushes,” in the corresponding sensory cortical areas. Whether auditory stimuli evoke delta-brushes in the premature auditory cortex has not been reported. Here, responses to auditory stimuli were studied in 46 premature infants without neurologic risk aged 31 to 38 postmenstrual weeks (PMW) during routine EEG recording. Stimuli consisted of either low-volume technogenic “clicks” near the background noise level of the neonatal care unit, or a human voice at conversational sound level. Stimuli were administrated pseudo-randomly during quiet and active sleep. In another protocol, the cortical response to a composite stimulus (“click” and voice) was manually triggered during EEG hypoactive periods of quiet sleep. Cortical responses were analyzed by event detection, power frequency analysis and stimulus locked averaging. Before 34 PMW, both voice and “click” stimuli evoked cortical responses with similar frequency-power topographic characteristics, namely a temporal negative slow-wave and rapid oscillations similar to spontaneous delta-brushes. Responses to composite stimuli also showed a maximal frequency-power increase in temporal areas before 35 PMW. From 34 PMW the topography of responses in quiet sleep was different for “click” and voice stimuli: responses to “clicks” became diffuse but responses to voice remained limited to temporal areas. After the age of 35 PMW auditory evoked delta-brushes progressively disappeared and were replaced by a low amplitude response in the same location. Our data show that auditory stimuli mimicking ambient sounds efficiently evoke delta-brushes in temporal areas in the premature infant before 35 PMW. Along with findings in other sensory modalities (visual and somatosensory), these findings suggest that sensory driven delta-brushes represent a ubiquitous feature of the human sensory cortex during fetal stages and provide a potential test of functional cortical maturation during fetal development.  相似文献   

6.

Introduction

The cerebral resting state in schizophrenia is altered, as has been demonstrated separately by electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state networks (RSNs). Previous simultaneous EEG/fMRI findings in healthy controls suggest that a consistent spatiotemporal coupling between neural oscillations (EEG frequency correlates) and RSN activity is necessary to organize cognitive processes optimally. We hypothesized that this coupling is disorganized in schizophrenia and related psychotic disorders, in particular regarding higher cognitive RSNs such as the default-mode (DMN) and left-working-memory network (LWMN).

Methods

Resting state was investigated in eleven patients with a schizophrenia spectrum disorder (n = 11) and matched healthy controls (n = 11) using simultaneous EEG/fMRI. The temporal association of each RSN to topographic spectral changes in the EEG was assessed by creating Covariance Maps. Group differences within, and group similarities across frequencies were estimated for the Covariance Maps.

Results

The coupling of EEG frequency bands to the DMN and the LWMN respectively, displayed significant similarities that were shifted towards lower EEG frequencies in patients compared to healthy controls.

Conclusions

By combining EEG and fMRI, each measuring different properties of the same pathophysiology, an aberrant relationship between EEG frequencies and altered RSNs was observed in patients. RSNs of patients were related to lower EEG frequencies, indicating functional alterations of the spatiotemporal coupling.

Significance

The finding of a deviant and shifted coupling between RSNs and related EEG frequencies in patients with a schizophrenia spectrum disorder is significant, as it might indicate how failures in the processing of internal and external stimuli, as commonly seen during this symptomatology (i.e. thought disorders, hallucinations), arise.  相似文献   

7.
At rest, spontaneous brain activity measured by fMRI is summarized by a number of distinct resting state networks (RSNs) following similar temporal time courses. Such networks have been consistently identified across subjects using spatial ICA (independent component analysis). Moreover, graph theory-based network analyses have also been applied to resting-state fMRI data, identifying similar RSNs, although typically at a coarser spatial resolution. In this work, we examined resting-state fMRI networks from 194 subjects at a voxel-level resolution, and examined the consistency of RSNs across subjects using a metric called scaled inclusivity (SI), which summarizes consistency of modular partitions across networks. Our SI analyses indicated that some RSNs are robust across subjects, comparable to the corresponding RSNs identified by ICA. We also found that some commonly reported RSNs are less consistent across subjects. This is the first direct comparison of RSNs between ICAs and graph-based network analyses at a comparable resolution.  相似文献   

8.
Early-onset Alzheimer’s disease (AD) patients present a different clinical profile than late-onset AD patients. This can be partially explained by cortical atrophy, although brain organization might provide more insight. The aim of this study was to examine functional connectivity in early-onset and late-onset AD patients. Resting-state fMRI scans of 20 early-onset (<65 years old), 28 late-onset (≥65 years old) AD patients and 15 “young” (<65 years old) and 31 “old” (≥65 years old) age-matched controls were available. Resting-state network-masks were used to create subject-specific maps. Group differences were examined using a non-parametric permutation test, accounting for gray-matter. Performance on five cognitive domains were used in a correlation analysis with functional connectivity in AD patients. Functional connectivity was not different in any of the RSNs when comparing the two control groups (young vs. old controls), which implies that there is no general effect of aging on functional connectivity. Functional connectivity in early-onset AD was lower in all networks compared to age-matched controls, where late-onset AD showed lower functional connectivity in the default-mode network. Functional connectivity was lower in early-onset compared to late-onset AD in auditory-, sensory-motor, dorsal-visual systems and the default mode network. Across patients, an association of functional connectivity of the default mode network was found with visuoconstruction. Functional connectivity of the right dorsal visual system was associated with attention across patients. In late-onset AD patients alone, higher functional connectivity of the sensory-motor system was associated with poorer memory performance. Functional brain organization was more widely disrupted in early-onset AD when compared to late-onset AD. This could possibly explain different clinical profiles, although more research into the relationship of functional connectivity and cognitive performance is needed.  相似文献   

9.
Ding JR  Liao W  Zhang Z  Mantini D  Xu Q  Wu GR  Lu G  Chen H 《PloS one》2011,6(10):e26596
Exploring topological properties of human brain network has become an exciting topic in neuroscience research. Large-scale structural and functional brain networks both exhibit a small-world topology, which is evidence for global and local parallel information processing. Meanwhile, resting state networks (RSNs) underlying specific biological functions have provided insights into how intrinsic functional architecture influences cognitive and perceptual information processing. However, topological properties of single RSNs remain poorly understood. Here, we have two hypotheses: i) each RSN also has optimized small-world architecture; ii) topological properties of RSNs related to perceptual and higher cognitive processes are different. To test these hypotheses, we investigated the topological properties of the default-mode, dorsal attention, central-executive, somato-motor, visual and auditory networks derived from resting-state functional magnetic resonance imaging (fMRI). We found small-world topology in each RSN. Furthermore, small-world properties of cognitive networks were higher than those of perceptual networks. Our findings are the first to demonstrate a topological fractionation between perceptual and higher cognitive networks. Our approach may be useful for clinical research, especially for diseases that show selective abnormal connectivity in specific brain networks.  相似文献   

10.

Background

Several task-based functional MRI (fMRI) studies have highlighted abnormal activation in specific regions involving the low-level perceptual (auditory, visual, and somato-motor) network in posttraumatic stress disorder (PTSD) patients. However, little is known about whether the functional connectivity of the low-level perceptual and higher-order cognitive (attention, central-execution, and default-mode) networks change in medication-naïve PTSD patients during the resting state.

Methods

We investigated the resting state networks (RSNs) using independent component analysis (ICA) in 18 chronic Wenchuan earthquake-related PTSD patients versus 20 healthy survivors (HSs).

Results

Compared to the HSs, PTSD patients displayed both increased and decreased functional connectivity within the salience network (SN), central executive network (CEN), default mode network (DMN), somato-motor network (SMN), auditory network (AN), and visual network (VN). Furthermore, strengthened connectivity involving the inferior temporal gyrus (ITG) and supplementary motor area (SMA) was negatively correlated with clinical severity in PTSD patients.

Limitations

Given the absence of a healthy control group that never experienced the earthquake, our results cannot be used to compare alterations between the PTSD patients, physically healthy trauma survivors, and healthy controls. In addition, the breathing and heart rates were not monitored in our small sample size of subjects. In future studies, specific task paradigms should be used to reveal perceptual impairments.

Conclusions

These findings suggest that PTSD patients have widespread deficits in both the low-level perceptual and higher-order cognitive networks. Decreased connectivity within the low-level perceptual networks was related to clinical symptoms, which may be associated with traumatic reminders causing attentional bias to negative emotion in response to threatening stimuli and resulting in emotional dysregulation.  相似文献   

11.

Background

Numerous neuroimaging studies report abnormal regional brain activity during working memory performance in schizophrenia, but few have examined brain network integration as determined by “functional connectivity” analyses.

Methodology/Principal Findings

We used independent component analysis (ICA) to identify and characterize dysfunctional spatiotemporal networks in schizophrenia engaged during the different stages (encoding and recognition) of a Sternberg working memory fMRI paradigm. 37 chronic schizophrenia and 54 healthy age/gender-matched participants performed a modified Sternberg Item Recognition fMRI task. Time series images preprocessed with SPM2 were analyzed using ICA. Schizophrenia patients showed relatively less engagement of several distinct “normal” encoding-related working memory networks compared to controls. These encoding networks comprised 1) left posterior parietal-left dorsal/ventrolateral prefrontal cortex, cingulate, basal ganglia, 2) right posterior parietal, right dorsolateral prefrontal cortex and 3) default mode network. In addition, the left fronto-parietal network demonstrated a load-dependent functional response during encoding. Network engagement that differed between groups during recognition comprised the posterior cingulate, cuneus and hippocampus/parahippocampus. As expected, working memory task accuracy differed between groups (p<0.0001) and was associated with degree of network engagement. Functional connectivity within all three encoding-associated functional networks correlated significantly with task accuracy, which further underscores the relevance of abnormal network integration to well-described schizophrenia working memory impairment. No network was significantly associated with task accuracy during the recognition phase.

Conclusions/Significance

This study extends the results of numerous previous schizophrenia studies that identified isolated dysfunctional brain regions by providing evidence of disrupted schizophrenia functional connectivity using ICA within widely-distributed neural networks engaged for working memory cognition.  相似文献   

12.
Independent component analysis (ICA) can unravel functional brain networks from functional magnetic resonance imaging (fMRI) data. The number of the estimated components affects both the spatial pattern of the identified networks and their time-course estimates. Here group-ICA was applied at four dimensionalities (10, 20, 40, and 58 components) to fMRI data collected from 15 subjects who viewed a 15-min silent film ("At land" by Maya Deren). We focused on the dorsal attention network, the default-mode network, and the sensorimotor network. The lowest dimensionalities demonstrated most prominent activity within the dorsal attention network, combined with the visual areas, and in the default-mode network; the sensorimotor network only appeared with ICA comprising at least 20 components. The results suggest that even very low-dimensional ICA can unravel the most prominent functionally-connected brain networks. However, increasing the number of components gives a more detailed picture and functionally feasible subdivision of the major networks. These results improve our understanding of the hierarchical subdivision of brain networks during viewing of a movie that provides continuous stimulation embedded in an attention-directing narrative.  相似文献   

13.
The past decade has seen astounding discoveries about resting-state brain activity patterns in normal brain as well as their alterations in brain diseases. While the vast majority of resting-state studies are based on the blood-oxygen-level-dependent (BOLD) functional MRI (fMRI), arterial spin labeling (ASL) perfusion fMRI can simultaneously capture BOLD and cerebral blood flow (CBF) signals, providing a unique opportunity for assessing resting brain functions with concurrent BOLD (ccBOLD) and CBF signals. Before taking that benefit, it is necessary to validate the utility of ccBOLD signal for resting-state analysis using conventional BOLD (cvBOLD) signal acquired without ASL modulations. To address this technical issue, resting cvBOLD and ASL perfusion MRI were acquired from a large cohort (n = 89) of healthy subjects. Four widely used resting-state brain function analyses were conducted and compared between the two types of BOLD signal, including the posterior cingulate cortex (PCC) seed-based functional connectivity (FC) analysis, independent component analysis (ICA), analysis of amplitude of low frequency fluctuation (ALFF), and analysis of regional homogeneity (ReHo). Consistent default mode network (DMN) as well as other resting-state networks (RSNs) were observed from cvBOLD and ccBOLD using PCC-FC analysis and ICA. ALFF from both modalities were the same for most of brain regions but were different in peripheral regions suffering from the susceptibility gradients induced signal drop. ReHo showed difference in many brain regions, likely reflecting the SNR and resolution differences between the two BOLD modalities. The DMN and auditory networks showed highest CBF values among all RSNs. These results demonstrated the feasibility of ASL perfusion MRI for assessing resting brain functions using its concurrent BOLD in addition to CBF signal, which provides a potentially useful way to maximize the utility of ASL perfusion MRI.  相似文献   

14.
Resting-state functional MRI (rs-fMRI) permits study of the brain’s functional networks without requiring participants to perform tasks. Robust changes in such resting state networks (RSNs) have been observed in neurologic disorders, and rs-fMRI outcome measures are candidate biomarkers for monitoring clinical trials, including trials of extended therapeutic interventions for rehabilitation of patients with chronic conditions. In this study, we aim to present a unique longitudinal dataset reporting on a healthy adult subject scanned weekly over 3.5 years and identify rs-fMRI outcome measures appropriate for clinical trials. Accordingly, we assessed the reproducibility, and characterized the temporal structure of, rs-fMRI outcome measures derived using independent component analysis (ICA). Data was compared to a 21-person dataset acquired on the same scanner in order to confirm that the values of the single-subject RSN measures were within the expected range as assessed from the multi-participant dataset. Fourteen RSNs were identified, and the inter-session reproducibility of outcome measures—network spatial map, temporal signal fluctuation magnitude, and between-network connectivity (BNC)–was high, with executive RSNs showing the highest reproducibility. Analysis of the weekly outcome measures also showed that many rs-fMRI outcome measures had a significant linear trend, annual periodicity, and persistence. Such temporal structure was most prominent in spatial map similarity, and least prominent in BNC. High reproducibility supports the candidacy of rs-fMRI outcome measures as biomarkers, but the presence of significant temporal structure needs to be taken into account when such outcome measures are considered as biomarkers for rehabilitation-style therapeutic interventions in chronic conditions.  相似文献   

15.
Synchronized gamma frequency oscillations in neural networks are thought to be important to sensory information processing, and their effects have been intensively studied. Here we describe a mechanism by which the nervous system can readily control gamma oscillation effects, depending selectively on visual stimuli. Using a model neural network simulation, we found that sensory response in the primary visual cortex is significantly modulated by the resonance between “spontaneous” and “stimulus-driven” oscillations. This gamma resonance can be precisely controlled by the synaptic plasticity of thalamocortical connections, and cortical response is regulated differentially according to the resonance condition. The mechanism produces a selective synchronization between the afferent and downstream neural population. Our simulation results explain experimental observations such as stimulus-dependent synchronization between the thalamus and the cortex at different oscillation frequencies. The model generally shows how sensory information can be selectively routed depending on its frequency components.  相似文献   

16.

Background

Transient ischemic attack (TIA) is usually defined as a neurologic ischemic disorder without permanent cerebral infarction. Studies have showed that patients with TIA can have lasting cognitive functional impairment. Inherent brain activity in the resting state is spatially organized in a set of specific coherent patterns named resting state networks (RSNs), which epitomize the functional architecture of memory, language, attention, visual, auditory and somato-motor networks. Here, we aimed to detect differences in RSNs between TIA patients and healthy controls (HCs).

Methods

Twenty one TIA patients suffered an ischemic event and 21 matched HCs were enrolled in the study. All subjects were investigated using cognitive tests, psychiatric tests and functional magnetic resonance imaging (fMRI). Independent component analysis (ICA) was adopted to acquire the eight brain RSNs. Then one-sample t-tests were calculated in each group to gather the spatial maps of each RSNs, followed by second level analysis to investigate statistical differences on RSNs between twenty one TIA patients and 21 controls. Furthermore, a correlation analysis was performed to explore the relationship between functional connectivity (FC) and cognitive and psychiatric scales in TIA group.

Results

Compared with the controls, TIA patients exhibited both decreased and increased functional connectivity in default mode network (DMN) and self-referential network (SRN), and decreased functional connectivity in dorsal attention network (DAN), central-executive network (CEN), core network (CN), somato-motor network (SMN), visual network (VN) and auditory network (AN). There was no correlation between neuropsychological scores and functional connectivity in regions of RSNs.

Conclusions

We observed selective impairments of RSN intrinsic FC in TIA patients, whose all eight RSNs had aberrant functional connectivity. These changes indicate that TIA is a disease with widely abnormal brain networks. Our results might put forward a novel way to look into neuro-pathophysiological mechanisms in TIA patients.  相似文献   

17.
We investigated auditory, dorsal attention, and default mode networks in adults with tinnitus and hearing loss in a resting state functional connectivity study. Data were obtained using continuous functional magnetic resonance imaging (fMRI) while the participants were at “rest” and were not performing any task. Participants belonged to one of three groups: middle-aged adults with tinnitus and mild-to-moderate high frequency hearing loss (TIN), age-matched controls with normal hearing and no tinnitus (NH), and a second control group with mild-to-moderate high frequency hearing loss without tinnitus (HL). After standard preprocessing, (a) a group independent component analysis (ICA) using 30 components and (b) a seeding-based connectivity analysis were conducted. In the group ICA, the default mode network was the only network to display visual differences between subject groups. In the seeding analysis, we found increased connectivity between the left parahippocampus and the auditory resting state network in the TIN group when compared to NH controls. Similarly, there was also an increased correlation between the right parahippocampus and the dorsal attention network when compared to HL controls. Other group differences in this attention network included decreased correlations between the seed regions and the right supramarginal gyrus in TIN patients when compared to HL controls. In the default mode network, there was a strong decrease in correlation between the seed regions and the precuneus when compared to both control groups. The findings of this study identify specific alterations in the connectivity of the default mode, dorsal attention, and auditory resting state networks due to tinnitus. The results suggest that therapies for tinnitus that mitigate the increased connectivity of limbic regions with auditory and attention resting state networks and the decreased coherence of the default mode network could be effective at reducing tinnitus-related distress.  相似文献   

18.
It is well known that the planum temporale (PT) area in the posterior temporal lobe carries out spectro-temporal analysis of auditory stimuli, which is crucial for speech, for example. There are suggestions that the PT is also involved in auditory attention, specifically in the discrimination and selection of stimuli from the left and right ear. However, direct evidence is missing so far. To examine the role of the PT in auditory attention we asked fourteen participants to complete the Bergen Dichotic Listening Test. In this test two different consonant-vowel syllables (e.g., “ba” and “da”) are presented simultaneously, one to each ear, and participants are asked to verbally report the syllable they heard best or most clearly. Thus attentional selection of a syllable is stimulus-driven. Each participant completed the test three times: after their left and right PT (located with anatomical brain scans) had been stimulated with repetitive transcranial magnetic stimulation (rTMS), which transiently interferes with normal brain functioning in the stimulated sites, and after sham stimulation, where participants were led to believe they had been stimulated but no rTMS was applied (control). After sham stimulation the typical right ear advantage emerged, that is, participants reported relatively more right than left ear syllables, reflecting a left-hemispheric dominance for language. rTMS over the right but not left PT significantly reduced the right ear advantage. This was the result of participants reporting more left and fewer right ear syllables after right PT stimulation, suggesting there was a leftward shift in stimulus selection. Taken together, our findings point to a new function of the PT in addition to auditory perception: particularly the right PT is involved in stimulus selection and (stimulus-driven), auditory attention.  相似文献   

19.
Behavioral consequences of a brain insult represent an interaction between the injury and the capacity of the rest of the brain to adapt to it. We provide experimental support for the notion that genetic factors play a critical role in such adaptation. We induced a controlled brain disruption using repetitive transcranial magnetic stimulation (rTMS) and show that APOE status determines its impact on distributed brain networks as assessed by functional MRI (fMRI).Twenty non-demented elders exhibiting mild memory dysfunction underwent two fMRI studies during face-name encoding tasks (before and after rTMS). Baseline task performance was associated with activation of a network of brain regions in prefrontal, parietal, medial temporal and visual associative areas. APOE ε4 bearers exhibited this pattern in two separate independent components, whereas ε4-non carriers presented a single partially overlapping network. Following rTMS all subjects showed slight ameliorations in memory performance, regardless of APOE status. However, after rTMS APOE ε4-carriers showed significant changes in brain network activation, expressing strikingly similar spatial configuration as the one observed in the non-carrier group prior to stimulation. Similarly, activity in areas of the default-mode network (DMN) was found in a single component among the ε4-non bearers, whereas among carriers it appeared disaggregated in three distinct spatiotemporal components that changed to an integrated single component after rTMS.Our findings demonstrate that genetic background play a fundamental role in the brain responses to focal insults, conditioning expression of distinct brain networks to sustain similar cognitive performance.  相似文献   

20.
The extent to which the auditory system, like the visual system, processes spatial stimulus characteristics such as location and motion in separate specialized neuronal modules or in one homogeneously distributed network is unresolved. Here we present a patient with a selective deficit for the perception and discrimination of auditory motion following resection of the right anterior temporal lobe and the right posterior superior temporal gyrus (STG). Analysis of stimulus identity and location within the auditory scene remained intact. In addition, intracranial auditory evoked potentials, recorded preoperatively, revealed motion-specific responses selectively over the resected right posterior STG, and electrical cortical stimulation of this region was experienced by the patient as incoming moving sounds. Collectively, these data present a patient with cortical motion deafness, providing evidence that cortical processing of auditory motion is performed in a specialized module within the posterior STG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号