首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stringently controlled conditional expressing systems are crucial for the functional characterization of genes. Currently, screening of multiple clones to identify the tightly controlled ones is necessary but time-consuming. Here, we describe a system fusing Tet (tetracycline)-inducible elements, BAC (bacterial artificial chromosome) and Gateway technology together to allow tight control of gene expression in BAC-transfected eukaryotic bulk cell cultures. Recombinase cloning into the shuttle vector and the BAC facilitates vector construction. An EGFP (enhanced green fluorescent protein) allows FACS (fluorescence activated cell sorting) and the BAC technology ensures tight control of gene expression that is independent of the integrating site. In the current first application, our gene of interest encodes a β-catenin-ERα fusion protein. Tested by luciferase assay and western blotting, in HTB56 lung cancer cells the final BAC E11-IGR-β-catenin-ERα vector demonstrated sensitive inducibility by Tet or Dox (doxycycline) in a dose-dependent manner with low background, and the EGFP was an effective selection marker by FACS in bulk culture HTB56 and myeloblastic 32D cells. This is a highly efficient tool for the rapid generation of stringently controlled Tet-inducible systems in cell lines.  相似文献   

2.
CRISPR–Cas9 is a powerful tool for genome engineering, but its efficiency largely depends on guide RNA (gRNA). There are multiple methods available to evaluate the efficiency of gRNAs, including the T7E1 assay, surveyor nuclease assay, deep sequencing, and surrogate reporter systems. In the present study, we developed a cleavage-based surrogate that we have named the LacI-reporter to evaluate gRNA cleavage efficiency. The LacI repressor, under the control of the EF-1α promoter, represses luciferase or EGFP reporter expression by binding to the lac operator. Upon CRISPR–Cas9 cleavage at a target site located between the EF-1α promoter and the lacI gene, repressor expression is disrupted, thereby triggering luciferase or EGFP expression. Using this system, we can quantitate gRNA cleavage efficiency by assessing luciferase activity or EGFP expression. We found a strong positive correlation between the cleavage efficiency of gRNAs measured using this reporter and mutation frequency, measured using surveyor and deep sequencing. The genome-editing efficiency of gRNAs was validated in human liver organoids. Our LacI-reporter system provides a useful tool to select efficient gRNAs for genome editing.  相似文献   

3.
Hematopoietic Stem Cell (HSC) targeted gene transfer is an attractive treatment option for a number of hematopoietic disorders caused by single gene defects. However, extensive methylation of promoter sequences results in silencing of therapeutic gene expression. The choice of an appropriate promoter is therefore crucial for reproducible, stable and long-term transgene expression in clinical gene therapy. Recent studies suggest efficient and stable expression of transgenes from the ubiquitous chromatin opening element (UCOE) derived from the human HNRPA2B1-CBX3 locus can be achieved in murine HSC. Here, we compared the use of HNRPA2B1-CBX3 UCOE (A2UCOE)-mediated transgene regulation to two other frequently used promoters namely EF1α and PGK in human fetal liver-derived HSC (hflHSC). Efficient transduction of hflHSC with a lentiviral vector containing an HNRPA2B1-CBX3 UCOE-eGFP (A2UCOE-eGFP) cassette was achieved at higher levels than that obtained with umbilical cord blood derived HSC (3.1x; p<0.001). While hflHSC were readily transduced with all three test vectors (A2UCOE-eGFP, PGK-eGFP and EF1α-eGFP), only the A2-UCOE construct demonstrated sustained transgene expression in vitro over 24 days (p<0.001). In contrast, within 10 days in culture a rapid decline in transgene expression in both PGK-eGFP and EF1α-eGFP transduced hflHSC was seen. Subsequently, injection of transduced cells into immunodeficient mice (NOD/SCID/Il2rg -/-) demonstrated sustained eGFP expression for the A2UCOE-eGFP group up to 10 months post transplantation whereas PGK-eGFP and EF1α-eGFP transduced hflHSC showed a 5.1 and 22.2 fold reduction respectively over the same time period. We conclude that the A2UCOE allows a more efficient and stable expression in hflHSC to be achieved than either the PGK or EF1α promoters and at lower vector copy number per cell.  相似文献   

4.
To develop transgenic lines for conditional expression of desired genes in rats, we generated several lines of the transgenic rats carrying the tetracycline-controlled transactivator (tTA) gene. Using a vigorous, ubiquitous promoter to drive the tTA transgene, we obtained widespread expression of tTA in various tissues. Expression of tTA was sufficient to strongly activate its reporter gene, but was below the toxicity threshold. We examined the dynamics of Doxycycline (Dox)-regulated gene expression in transgenic rats. In the two transmittable lines, tTA-mediated activation of the reporter gene was fully subject to regulation by Dox. Dox dose-dependently suppressed tTA-activated gene expression. The washout time for the effects of Dox was dose-dependent. We tested a complex regime of Dox administration to determine the optimal effectiveness and washout duration. Dox was administered at a high dose (500 μg/ml in drinking water) for two days to reach the effective concentration, and then was given at a low dose (20 μg/ml) to maintain effectiveness. This regimen of Dox administration can achieve a quick switch between ON and OFF statuses of tTA-activated gene expression. In addition, administration of Dox to pregnant rats fully suppressed postnatal tTA-activated gene expression in their offspring. Sufficient levels of Dox are present in mother's milk to produce maximal efficacy in nursing neonates. Administration of Dox to pregnant or nursing rats can provide a continual suppression of tTA-dependent gene expression during embryonic and postnatal development. The tTA transgenic rat allows for inducible and reversible gene expression in the rat; this important tool will be valuable in the development of genetic rat models of human diseases.  相似文献   

5.
In recent years, lentiviral expression systems have gained an unmatched reputation among the gene therapy community for their ability to deliver therapeutic transgenes into a wide variety of difficult-to-transfect/transduce target tissues (brain, hematopoietic system, liver, lung, retina) without eliciting significant humoral immune responses. We have cloned a construction kit-like self-inactivating lentiviral expression vector family which is compatible to state-of-the-art packaging and pseudotyping technologies and contains, besides essential cis-acting lentiviral sequences, (i) unparalleled polylinkers with up to 29 unique sites for restriction endonucleases, many of which recognize 8 bp motifs, (ii) strong promoters derived from the human cytomegalovirus immediate-early promoter (PhCMV) or the human elongation factor 1α (PhEF1α), (iii) PhCMV– or PPGK– (phosphoglycerate kinase promoter) driven G418 resistance markers or fluorescent protein-based expression tracers and (iv) tricistronic expression cassettes for coordinated expression of up to three transgenes. In addition, we have designed a size-optimized series of highly modular lentiviral expression vectors (pLenti Module) which contain, besides the extensive central polylinker, unique restriction sites flanking any of the 5′U3, R-U5-ψ+-SD, cPPT-RRE-SA and 3′LTRΔU3 modules or placed within the 5′U3 (–78 bp) and 3′LTRΔU3 (8666 bp). pLentiModule enables straightforward cassette-type module swapping between lentiviral expression vector family members and facilitates the design of Tat-independent (replacement of 5′LTR by heterologous promoter elements), regulated and self-excisable proviruses (insertion of responsive operators or LoxP in the 3′LTRΔU3 element). We have validated our lentiviral expression vectors by transduction of a variety of insect, chicken, murine and human cell lines as well as adult rat cardiomyocytes, rat hippocampal slices and chicken embryos. The novel multi-purpose construction kit-like vector series described here is compatible with itself as well as many other (non-viral) mammalian expression vectors for straightforward exchange of key components (e.g. promoters, LTRs, resistance genes) and will assist the gene therapy and tissue engineering communities in developing lentiviral expression vectors tailored for optimal treatment of prominent human diseases.  相似文献   

6.
Erythroid Krüppel-like factor (EKLF), an erythroid tissue-specific Krüppel-type zinc finger protein, binds to the β-globin gene CACCC box and is essential for β-globin gene expression. EKLF does not activate the γ gene, the CACCC sequence of which differs from that of the β gene. To test whether the CACCC box sequence difference is the primary determinant of the selective activation of the β gene by EKLF, the CACCC boxes of β and γ genes were swapped and the resulting promoter activities were assayed by transient transfections in CV-1 cells. EKLF activated the β promoter carrying a γ CACCC box at a level comparable to that at which it activated the wild-type β promoter, whereas EKLF failed to activate a γ promoter carrying the β CACCC box, despite the presence of the optimal EKLF binding site. Similar results were obtained in K562 cells. The possibility that overexpressed EKLF superactivated the β promoter carrying the γ CACCC box, or that EKLF activated the mutated β promoter through the intact distal CACCC box, was excluded. To test whether the position of the CACCC box in the β or γ promoter determined EKLF specificity, the proximal β CACCC box sequence was created at the position of the β promoter (−140) which corresponds to the position of the CACCC box on the γ promoter. Similarly, the β CACCC box was created in the position of the γ promoter (−90) corresponding to the position of the CACCC box in the β promoter. EKLF retained weak activation potential on the β−140CAC promoter, whereas EKLF failed to activate the γ−90βCAC promoter even though that promoter contained an optimal EKLF binding site at the optimal position. Taken together, our findings indicate that the specificity of the activation of the β promoter by EKLF is determined by the overall structure of the β promoter rather than solely by the sequence of the β gene CACCC box.  相似文献   

7.
A number of methods have recently been published that use phylogenetic information extracted from large multiple sequence alignments to detect sites that have changed properties in related protein families. In this study we use such methods to assess functional divergence between eukaryotic EF-1α (eEF-1α), archaebacterial EF-1α (aEF-1α) and two eukaryote-specific EF-1α paralogs—eukaryotic release factor 3 (eRF3) and Hsp70 subfamily B suppressor 1 (HBS1). Overall, the evolutionary modes of aEF-1α, HBS1 and eRF3 appear to significantly differ from that of eEF-1α. However, functionally divergent (FD) sites detected between aEF-1α and eEF-1α only weakly overlap with sites implicated as putative EF-1β or aminoacyl-tRNA (aa-tRNA) binding residues in EF-1α, as expected based on the shared ancestral primary translational functions of these two orthologs. In contrast, FD sites detected between eEF-1α and its paralogs significantly overlap with the putative EF-1β and/or aa-tRNA binding sites in EF-1α. In eRF3 and HBS1, these sites appear to be released from functional constraints, indicating that they bind neither eEF-1β nor aa-tRNA. These results are consistent with experimental observations that eRF3 does not bind to aa-tRNA, but do not support the ‘EF-1α-like’ function recently proposed for HBS1. We re-assess the available genetic data for HBS1 in light of our analyses, and propose that this protein may function in stop codon-independent peptide release.  相似文献   

8.
Translation elongation factor 1β (EF-1β) catalyzes the exchange of bound GDP for GTP on EF-1α. The lethality of a null allele of the TEF5 gene encoding EF-1β in Saccharomyces cerevisiae was suppressed by extra copies of the TEF2 gene encoding EF-1α. The strains with tef5::TRP1 suppressed by extra copies of TEF2 were slow growing, cold sensitive, hypersensitive to inhibitors of translation elongation and showed increased phenotypic suppression of +1 frameshift and UAG nonsense mutations. Nine dominant mutant alleles of TEF2 that cause increased suppression of frameshift mutations also suppressed the lethality of tef5::TRP1. Most of the strains in which tef5::TRP1 is suppressed by dominant mutant alleles of TEF2 grew more slowly and were more antibiotic sensitive than strains with tef5::TRP1 suppressed by wild-type TEF2. Two alleles, TEF2-4 and TEF2-10, interact with tef5::TRP1 to produce strains that showed doubling times similar to tef5::TRP1 strains containing extra copies of wild-type TEF2. These strains were less cold sensitive, drug sensitive and correspondingly less efficient suppressors of +1 frameshift mutations. These phenotypes indicate that translation and cell growth are highly sensitive to changes in EF-1α and EF-1β activity.  相似文献   

9.
10.
11.
Although prolonged transgene expression in progenitor cells might be desirable for modified cell therapy, the viral promoter-based expression vector tends to promote transgene expression only for a limited period. Here, we examined the ability of cellular promoters from elongation factor-1alpha (EF-1alpha) and ubiquitin C to drive gene expression in hematopoietic TF-1 and mesenchymal progenitor cells. We compared the expression levels and duration of a model gene, interleukin-2, generated by the cellular promoters to those by the cytomegalovirus (CMV) promoter. The EF-1alpha and ubiquitin C promoters drove prolonged gene expression in hematopoietic TF-1 and mesenchymal progenitor cells, whereas the CMV promoter did not. At day 7 after transfection in TF-1 cells, the mRNA expression levels of interleukin-2 driven by the EF-1alpha and ubiquitin C promoters were 118- and 56-fold higher, respectively, than those driven by the CMV promoter. Similarly, in mesenchymal progenitor cells, the expression levels of interleukin-2 driven by the EF-1alpha and ubiquitin C promoters were 98- and 20-fold higher, respectively, than that driven by the CMV promoter-encoding plasmid. Moreover, the ubiquitin C promoter directed higher levels of green fluorescence protein expression in mesenchymal progenitor cells than did the CMV promoter. These results indicate that the use of cellular promoters such as those for EF-1alpha and ubiquitin C might direct prolonged gene expression in hematopoietic and mesenchymal progenitor cells.  相似文献   

12.
Translation requires the specific attachment of amino acids to tRNAs by aminoacyl-tRNA synthetases (aaRSs) and the subsequent delivery of aminoacyl-tRNAs to the ribosome by elongation factor 1 alpha (EF-1α). Interactions between EF-1α and various aaRSs have been described in eukaryotes, but the role of these complexes remains unclear. To investigate possible interactions between EF-1α and other cellular components, a yeast two-hybrid screen was performed for the archaeon Methanothermobacter thermautotrophicus. EF-1α was found to form a stable complex with leucyl-tRNA synthetase (LeuRS; KD = 0.7 μM). Complex formation had little effect on EF-1α activity, but increased the kcat for Leu-tRNALeu synthesis ~8-fold. In addition, EF-1α co-purified with the archaeal multi-synthetase complex (MSC) comprised of LeuRS, LysRS and ProRS, suggesting the existence of a larger aaRS:EF-1α complex in archaea. These interactions between EF-1α and the archaeal MSC contribute to translational fidelity both by enhancing the aminoacylation efficiencies of the three aaRSs in the complex and by coupling two stages of translation: aminoacylation of cognate tRNAs and their subsequent channeling to the ribosome.  相似文献   

13.
14.
GET Recombination, a simple inducible homologous recombination system for Escherichia coli, was used to target insertion of an EGFP cassette between the start and termination codons of the β-globin gene in a 200 kb BAC clone. The high degree of homology between the promoter regions of the β- and δ-globin genes also allowed the simultaneous generation of a δ-globin reporter construct with the deletion of 8.8 kb of intervening sequences. Both constructs expressed EGFP after transient transfection of MEL cells. Similarly, targeting of the EGFP cassette between the promoter regions of the γ-globin genes and the termination codon of the β-globin gene enabled the generation of reporter constructs for both Aγ- and Gγ-globin genes, involving specific deletions of 24 and 29 kb of genomic sequence, respectively. Finally the EGFP cassette was also inserted between the - and β-globin genes, with the simultaneous deletion of 44 kb of intervening sequence. The modified constructs were generated at high efficiency, illustrating the usefulness of GET Recombination to generate large deletions of specific sequences in BACs for functional studies. The establishment of stable erythropoietic cell lines with these globin constructs will facilitate the search for therapeutic agents that modify the expression of the individual globin genes in a physiologically relevant manner.  相似文献   

15.
The properties of constitutive promoters within adeno-associated viral (AAV) vectors have not yet been fully characterized. In this study, AAV vectors, in which enhanced GFP expression was directed by one of the six constitutive promoters (human β-actin, human elongation factor-1α, chicken β-actin combined with cytomegalovirus early enhancer, cytomegalovirus (CMV), simian virus 40, and herpes simplex virus thymidine kinase), were constructed and introduced into the HCT116, DLD-1, HT-1080, and MCF-10A cell lines. Quantification of GFP signals in infected cells demonstrated that the CMV promoter produced the highest GFP expression in the six promoters and maintained relatively high GFP expression for up to eight weeks after infection of HCT116, DLD-1, and HT-1080. Exogenous human CDKN2A gene expression was also introduced into DLD-1 and MCF-10A in a similar pattern by using AAV vectors bearing the human β-actin and the CMV promoters. The six constitutive promoters were subsequently placed upstream of the neomycin resistance gene within AAV vectors, and HCT116, DLD-1, and HT-1080 were infected with the resulting vectors. Of the six promoters, the CMV promoter produced the largest number of G418-resistant colonies in all three cell lines. Because AAV vectors have been frequently used as a platform to construct targeting vectors that permit gene editing in human cell lines, we lastly infected the three cell lines with AAV-based targeting vectors against the human PIGA gene in which one of the six promoters regulate the neomycin resistance gene. This assay revealed that the CMV promoter led to the lowest PIGA gene targeting efficiency in the investigated promoters. These results provide a clue to the identification of constitutive promoters suitable to express exogenous genes with AAV vectors, as well as those helpful to conduct efficient gene targeting using AAV-based targeting vectors in human cell lines.  相似文献   

16.
Kung SK  An DS  Chen IS 《Journal of virology》2000,74(8):3668-3681
We constructed human immunodeficiency virus type 1 (HIV-1) vectors that will allow higher levels of gene expression in T cells. Gene expression under the control of an internal cytomegalovirus (CMV) immediate-early promoter in a self-inactivating lentiviral vector (CSCG) is 4- to 15-fold lower in T-cell lines (SUPT1 and CEMX174) than in non-lymphoid-cell lines (HeLa and 293T). This is in contrast to a Moloney murine leukemia virus (MoMLV)-based retrovirus vector (SRalphaLEGFP). We therefore replaced the internal CMV promoter of CSCG with three different murine oncoretroviral long terminal repeat (LTR) promoters-murine sarcoma virus (MSV), MoMLV (MLV), and the LTR (termed Rh-MLV) that is derived from the ampho-mink cell focus-forming (AMP/MCF) retrovirus in the serum of one rhesus macaque monkey that developed T-cell lymphoma following autologous transplantation of enriched bone marrow stem cells transduced with a retrovirus vector preparation containing replication-competent viruses (E. F. Vanin, M. Kaloss, C. Broscius, and A. W. Nienhuis, J. Virol. 68:4241-4250, 1994). We found that the combination of Rh-MLV LTR and a partial gag sequence of MoMLV (Deltagag(871-1612)) in CS-Rh-MLV-E gave the highest level of enhanced green fluorescent protein (EGFP) gene expression compared with MLV, MSV LTR, phosphoglycerate kinase, and CMV promoters in T-cell lines, as well as activated primary T cells. Interestingly, there was a further two- to threefold increase in EGFP expression (thus, 10-fold-higher expression than with CMV) when the Rh-MLV promoter and Deltagag(871-1612) were used in a self-inactivating-vector setting that has a further deletion in the U3 region of the HIV-1 LTR. These hybrid vectors should prove useful in gene therapy applications for T cells.  相似文献   

17.
Plasmid-free Chlamydia trachomatis serovar L2 organisms have been transformed with chlamydial plasmid-based shuttle vectors pGFP::SW2 and pBRCT using β-lactamase as a selectable marker. However, the recommendation of amoxicillin, a β-lactam antibiotics, as one of the choices for treating pregnant women with cervicitis due to C. trachomatis infection has made the existing shuttle vectors unsuitable for transforming sexually transmitted infection (STI)-causing serovars of C. trachomatis. Thus, in the current study, we modified the pGFP::SW2 plasmid by fusing a blasticidin S deaminase gene to the GFP gene to establish blasticidin resistance as a selectable marker and replacing the β-lactamase gene with the Sh ble gene to eliminate the penicillin resistance. The new vector termed pGFPBSD/Z::SW2 was used for transforming plasmid-free C. trachomatis serovar D organisms. Using blasticidin for selection, stable transformants were obtained. The GFP-BSD fusion protein was detected in cultures infected with the pGFPBSD/Z::SW2-trasnformed serovar D organisms. The transformation restored the plasmid property to the plasmid-free serovar D organisms. Thus, we have successfully modified the pGFP::SW2 transformation system for studying the biology and pathogenesis of other STI-causing serovars of C. trachomatis.  相似文献   

18.

Background

Constitutive promoters that ensure sustained and high level gene expression are basic research tools that have a wide range of applications, including studies of human embryology and drug discovery in human embryonic stem cells (hESCs). Numerous cellular/viral promoters that ensure sustained gene expression in various cell types have been identified but systematic comparison of their activities in hESCs is still lacking.

Methodology/Principal Findings

We have quantitatively compared promoter activities of five commonly used constitutive promoters, including the human β-actin promoter (ACTB), cytomegalovirus (CMV), elongation factor-1α, (EF1α), phosphoglycerate kinase (PGK) and ubiquitinC (UbC) in hESCs. Lentiviral gene transfer was used to ensure stable integration of promoter-eGFP constructs into the hESCs genome. Promoter activities were quantitatively compared in long term culture of undifferentiated hESCs and in their differentiated progenies.

Conclusion/Significance

The ACTB, EF1α and PGK promoters showed stable activities during long term culture of undifferentiated hESCs. The ACTB promoter was superior by maintaining expression in 75–80% of the cells after 50 days in culture. During embryoid body (EB) differentiation, promoter activities of all five promoters decreased. Although the EF1α promoter was downregulated in approximately 50% of the cells, it was the most stable promoter during differentiation. Gene expression analysis of differentiated eGFP+ and eGFP- cells indicate that promoter activities might be restricted to specific cell lineages, suggesting the need to carefully select optimal promoters for constitutive gene expression in differentiated hESCs.  相似文献   

19.
20.
A novel yeast three-hybrid (Y3H) vector pBT was developed, which contains a tetracycline (Tet)-sensitive transactivator (tTA) expression unit and a Tet-responsive element (TRE)-driven 3rd protein expression unit within a single plasmid. To optimize tTA expression levels, several promoters for driving tTA expression were tested, and the weakest human cytomegalovirus (CMV) promoter showed the best induction/background ratio. Culturing yeast cells in different doses of doxycycline (Dox) resulted in a dose-dependent reduction of 3rd protein expression. Screening a cDNA library with pBT successfully identified functional Y3H interactions that could be easily discriminated from Y2H interactions by culturing on Dox-containing plates. At 5.0 μg/ml Dox, Y3H interactions were undetectable by the colony-forming assay under high-stringency selection conditions or by a lacZ colorimetric assay. A low-copy-number version of the pBT vector, pBT(L), completely eliminated the leakage activity of pBT found under low-stringency condition. In conclusion, the pBT system is a useful tool for studying the structures of higher-order protein complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号