首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca2+ mobilizing messengers, elicits Ca2+ release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca2+ signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression.  相似文献   

2.
3.
Lysosomal Ca2+ homeostasis is implicated in disease and controls many lysosomal functions. A key in understanding lysosomal Ca2+ signaling was the discovery of the two‐pore channels (TPCs) and their potential activation by NAADP. Recent work concluded that the TPCs function as a PI(3,5)P2 activated channels regulated by mTORC1, but not by NAADP. Here, we identified Mg2+ and the MAPKs, JNK and P38 as novel regulators of TPC2. Cytoplasmic Mg2+ specifically inhibited TPC2 outward current, whereas lysosomal Mg2+ partially inhibited both outward and inward currents in a lysosomal lumen pH‐dependent manner. Under controlled Mg2+, TPC2 is readily activated by NAADP with channel properties identical to those in response to PI(3,5)P2. Moreover, TPC2 is robustly regulated by P38 and JNK. Notably, NAADP‐mediated Ca2+ release in intact cells is regulated by Mg2+, PI(3,5)P2, and P38/JNK kinases, thus paralleling regulation of TPC2 currents. Our data affirm a key role for TPC2 in NAADP‐mediated Ca2+ signaling and link this pathway to Mg2+ homeostasis and MAP kinases, pointing to roles for lysosomal Ca2+ in cell growth, inflammation and cancer.  相似文献   

4.
To examine the role of secreted signaling molecules and neurogenic genes in early development, we have developed a culture system for the controlled differentiation of mouse embryonic stem (ES) cells. In the current investigation, two of the earliest identified BMP antagonists/neural-inducing factors, noggin and chordin, were expressed in pluripotent mouse ES cells. Neurons were present as early as 24 h following transfection of ES cells with a pCS2/noggin expression plasmid, with differentiation peaking at 72 h. With neuronal differentiation, stem cell marker genes were down-regulated and neural determination genes expressed. Coculture experiments and exposure to noggin-conditioned medium produced similar neuronal differentiation of control ES cells, while addition of BMP-4 to noggin expressants strikingly inhibited neuronal differentiation. Transfection of ES cells with a pCS2/chordin expression vector or exposure to chordin-conditioned medium produced a more complex pattern of differentiation; ES cells formed neurons, mesenchymal cells as well as N-CAM-positive, nestin-positive neuroepithelial progenitors. These data suggest that, consistent with their different expression fields, noggin and chordin may play distinct roles in patterning the early mouse embryo.  相似文献   

5.
Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca2+ mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca2+ in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found that the mouse ES cells are responsive to cADPR and possess the key components of the cADPR signaling pathway. In vitro cardiomyocyte (CM) differentiation of mouse ES cells was initiated by embryoid body (EB) formation. Interestingly, beating cells appeared earlier and were more abundant in CD38 knockdown EBs than in control EBs. Real-time RT-PCR and Western blot analyses further showed that the expression of several cardiac markers, including GATA4, MEF2C, NKX2.5, and α-MLC, were increased markedly in CD38 knockdown EBs than those in control EBs. Similarly, FACS analysis showed that more cardiac Troponin T-positive CMs existed in CD38 knockdown or 8-Br-cADPR, a cADPR antagonist, treated EBs compared with that in control EBs. On the other hand, overexpression of CD38 in mouse ES cells significantly inhibited CM differentiation. Moreover, CD38 knockdown ES cell-derived CMs possess the functional properties characteristic of normal ES cell-derived CMs. Last, we showed that the CD38-cADPR pathway negatively modulated the FGF4-Erks1/2 cascade during CM differentiation of ES cells, and transiently inhibition of Erk1/2 blocked the enhanced effects of CD38 knockdown on the differentiation of CM from ES cells. Taken together, our data indicate that the CD38-cADPR-Ca2+ signaling pathway antagonizes the CM differentiation of mouse ES cells.  相似文献   

6.
The multilineage differentiation capacity of mouse embryonic stem (ES) cells offers a potential testing platform for gene products that mediate mammalian lineage determination and cellular specialization. Identification of such differentiation regulators is crucial to harnessing ES cells for pharmaceutical discovery and cell therapy. Here we describe the use of episomal expression technology for functional evaluation of cDNA clones during ES-cell differentiation in vitro. Several candidate cDNAs identified by subtractive cloning and expression profiling were introduced into ES cells in episomal expression constructs. Subsequent differentiation revealed that the Wnt antagonist Sfrp2 stimulates production of neural progenitors. The significance of this observation was substantiated by forced expression of Wnt-1 and treatment with lithium chloride, both of which inhibit neural differentiation. These findings reveal the importance of Wnt signaling in regulating ES-cell lineage diversification. More generally, this study establishes a path for rapid and direct validation of candidate genes in ES cells.  相似文献   

7.
8.
9.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca2+ required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca2+ from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca2+ release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca2+ that will enable it to act as a Ca2+ release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca2+] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca2+ release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca2+ release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μm but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.  相似文献   

10.
Leclerc C  Néant I  Moreau M 《Biochimie》2011,93(12):2102-2111
The calcium (Ca2+) signaling pathways have crucial roles in development from fertilization through differentiation to organogenesis. In the nervous system, Ca2+ signals are important regulators for various neuronal functions, including formation and maturation of neuronal circuits and long-term memory. However, Ca2+ signals are mainly involved in the earliest steps of nervous system development including neural induction, differentiation of neural progenitors into neurons, and the neuro-glial switch. This review examines when and how Ca2+ signals are generated during each of these steps with examples taken from in vivo studies in vertebrate embryos and from in vitro assays using embryonic and neural stem cells. Also discussed is the highly specific nature of the Ca2+ signaling pathway and its interaction with the other signaling pathways involved in early neural development.  相似文献   

11.
Pulmonary arterial hypertension (PAH) is a form of obstructive vascular disease. Chronic hypoxic exposure leads to excessive proliferation of pulmonary arterial smooth muscle cells and pulmonary arterial endothelial cells. This condition can potentially be aggravated by [Ca2+] i mobilization. In the present study, hypoxia exposure of rat's model was established. Two-pore segment channels (TPCs) silencing was achieved in rats' models by injecting Lsh-TPC1 or Lsh-TPC2. The effects of TPC1/2 silencing on PAH were evaluated by H&E staining detecting pulmonary artery wall thickness and ELISA assay kit detecting NAADP concentrations in lung tissues. TPC1/2 silencing was achieved in PASMCs and PAECs, and cell proliferation was detected by MTT and BrdU incorporation assays. As the results shown, NAADP-activated [Ca2+]i shows to be mediated via two-pore segment channels (TPCs) in PASMCs, with TPC1 being the dominant subtype. NAADP generation and TPC1/2 mRNA and protein levels were elevated in the hypoxia-induced rat PAH model; NAADP was positively correlated with TPC1 and TPC2 expression, respectively. In vivo, Lsh-TPC1 or Lsh-TPC2 infection significantly improved the mean pulmonary artery pressure and PAH morphology. In vitro, TPC1 silencing inhibited NAADP-AM-induced PASMC proliferation and [Ca2+]i in PASMCs, whereas TPC2 silencing had minor effects during this process; TPC2 silencing attenuated NAADP-AM- induced [Ca2+]i and ECM in endothelial cells, whereas TPC1 silencing barely ensued any physiological changes. In conclusion, TPC1/2 might provide a unifying mechanism within pulmonary arterial hypertension, which can potentially be regarded as a therapeutic target.  相似文献   

12.
Embryonic stem (ES) cells are multipotent progenitors with unlimited developmental potential, and in vitro differentiated ES cell-derived neuronal progenitors can develop into functional neurons when transplanted in the central nervous system. As the capacity of naive primary ES cells to integrate in the adult brain and the role of host neural tissue therein are yet largely unknown, we grafted low densities of undifferentiated mouse ES (mES) cells in adult mouse brain regions associated with neurodegenerative disorders; and we demonstrate that ES cell-derived neurons undergo gradual integration in recipient tissue and acquire morphological and electrophysiological properties indistinguishable from those of host neurons. Only some brain areas permitted survival of mES-derived neural progenitors and formed instructive environments for neuronal differentiation and functional integration of naive mES cells. Hence, region-specific presence of microenvironmental cues and their pivotal involvement in controlling ES cell integration in adult brain stress the importance of recipient tissue characteristics in formulating cell replacement strategies for neurodegenerative disorders.  相似文献   

13.
Development of the nervous system requires that timely withdrawal from the cell cycle be coupled with initiation of differentiation. Ubiquitin-mediated degradation of the N-Myc oncoprotein in neural stem/progenitor cells is thought to trigger the arrest of proliferation and begin differentiation. Here we report that the HECT-domain ubiquitin ligase Huwe1 ubiquitinates the N-Myc oncoprotein through Lys 48-mediated linkages and targets it for destruction by the proteasome. This process is physiologically implemented by embryonic stem (ES) cells differentiating along the neuronal lineage and in the mouse brain during development. Genetic and RNA interference-mediated inactivation of the Huwe1 gene impedes N-Myc degradation, prevents exit from the cell cycle by opposing the expression of Cdk inhibitors and blocks differentiation through persistent inhibition of early and late markers of neuronal differentiation. Silencing of N-myc in cells lacking Huwe1 restores neural differentiation of ES cells and rescues cell-cycle exit and differentiation of the mouse cortex, demonstrating that Huwe1 restrains proliferation and enables neuronal differentiation by mediating the degradation of N-Myc. These findings indicate that Huwe1 links destruction of N-Myc to the quiescent state that complements differentiation in the neural tissue.  相似文献   

14.
15.
The organellar targeting of two-pore channels (TPCs) and their capacity to associate as homo- and heterodimers may be critical to endolysosomal signaling. A more detailed understanding of the functional association of vertebrate TPC1–3 is therefore necessary. We report here that when stably expressed in HEK293 cells, human (h) TPC1 and chicken (c) TPC3 were specifically targeted to different subpopulations of endosomes, hTPC2 was specifically targeted to lysosomes, and rabbit (r) TPC3 was specifically targeted to both endosomes and lysosomes. Intracellular dialysis of NAADP evoked a Ca2+ transient in HEK293 cells that stably overexpressed hTPC1, hTPC2, and rTPC3, but not in cells that stably expressed cTPC3. The Ca2+ transients induced in cells that overexpressed endosome-targeted hTPC1 were abolished upon depletion of acidic Ca2+ stores by bafilomycin A1, but remained unaffected following depletion of endoplasmic reticulum stores by thapsigargin. In contrast, Ca2+ transients induced via lysosome-targeted hTPC2 and endolysosome-targeted rTPC3 were abolished by bafilomycin A1 and markedly attenuated by thapsigargin. NAADP induced marked Ca2+ transients in HEK293 cells that stably coexpressed hTPC2 with hTPC1 or cTPC3, but failed to evoke any such response in cells that coexpressed interacting hTPC2 and rTPC3 subunits. We therefore conclude that 1) all three TPC subtypes may support Ca2+ signaling from their designate acidic stores, and 2) lysosome-targeted (but not endosome-targeted) TPCs support coupling to the endoplasmic reticulum.  相似文献   

16.
More potent, but less known than IP3 that liberates Ca2+ from the ER, NAADP releases Ca2+ from acidic stores. The notion that TPC channels mediate this Ca2+ release was questioned recently by studies suggesting that TPCs are rather PI(3,5)P2‐activated Na+ channels. Ruas et al (2015) now partially reconcile these views by showing that TPCs significantly conduct both cations and confirm their activation by both NAADP and PI(3,5)P2. They attribute the failure of others to observe TPC‐dependent NAADP‐induced Ca2+ release in vivo to inadequate mouse models that retain partial TPC function.  相似文献   

17.
Middle East Respiratory Syndrome coronavirus (MERS-CoV) infections are associated with a significant mortality rate, and existing drugs show poor efficacy. Identifying novel targets/pathways required for MERS infectivity is therefore important for developing novel therapeutics. As an enveloped virus, translocation through the endolysosomal system provides one pathway for cellular entry of MERS-CoV. In this context, Ca2+-permeable channels within the endolysosomal system regulate both the luminal environment and trafficking events, meriting investigation of their role in regulating processing and trafficking of MERS-CoV. Knockdown of endogenous two-pore channels (TPCs), targets for the Ca2+ mobilizing second messenger NAADP, impaired infectivity in a MERS-CoV spike pseudovirus particle translocation assay. This effect was selective as knockdown of the lysosomal cation channel mucolipin-1 (TRPML1) was without effect. Pharmacological inhibition of NAADP-evoked Ca2+ release using several bisbenzylisoquinoline alkaloids also blocked MERS pseudovirus translocation. Knockdown of TPC1 (biased endosomally) or TPC2 (biased lysosomally) decreased the activity of furin, a protease which facilitates MERS fusion with cellular membranes. Pharmacological or genetic inhibition of TPC1 activity also inhibited endosomal motility impairing pseudovirus progression through the endolysosomal system. Overall, these data support a selective, spatially autonomous role for TPCs within acidic organelles to support MERS-CoV translocation.  相似文献   

18.
The effects of Wnt signaling on neural progenitor cells have been controversial. Activation of the canonical Wnt signaling pathway either promotes neural progenitor cell proliferation or accelerates their differentiation into postmitotic neurons. This study demonstrates that activation of the Wnt signaling pathway by itself induces neural progenitor cell proliferation but does not directly affect neuronal differentiation processes. To investigate whether Wnt signaling promotes expansion and/or differentiation of neural progenitor cells in the developing hippocampus, we prepared primary mouse hippocampal progenitors and treated them with Wnt3a in a chemically defined culture medium. Wnt3a increased the total number of cells, including the numbers of Ki67+ proliferating cells and Tuj1+ differentiated neurons. This result verified that Wnt3a promoted neural progenitor cell proliferation. Meanwhile, Wnt3a did not appear to actively enhance the neuronal differentiation process itself, because (1) the ratio of Tuj1+ cells to the total cells, and (2) the ratio of BrdU+ Tuj1+ cells to the total BrdU+ cells, were both comparable between cultures with or without Wnt3a. Indeed, Wnt3a caused no significant change in either cell survival or the proportion of symmetric and asymmetric cell divisions that directly affected neuron production. We finally demonstrated that the Wnt3a treatment simply shortened cell cycle duration of neural progenitor cells by 2.9 h. The accelerated cell cycle progression without affecting the ratio of symmetric/asymmetric cell divisions explains how Wnt signaling per se leads to the expansion of both proliferative cell population and differentiated neuronal cell population.  相似文献   

19.
20.
Differentiation of embryonic stem cells into retinal neurons   总被引:14,自引:0,他引:14  
Mouse embryonic stem (ES) cells are continuous cell lines derived from the inner mass of blastocysts. Neural progenitors derived from these cells serve as an excellent model for controlled neural differentiation and as such have tremendous potential to understand and treat neurodegenerative diseases. Here, we demonstrate that ES cell-derived neural progenitors express regulatory factors needed for retinal differentiation and that in response to epigenetic cues a subset of them differentiate along photoreceptor lineage. During the differentiation, they activate photoreceptor regulatory genes, suggesting that ES cell-derived neural progenitors recruit mechanisms normally used for photoreceptor differentiation in vivo. These observations suggest that ES cells can serve as an excellent model for understanding mechanisms that regulate specification of retinal neurons and as an unlimited source of neural progenitors for treating degenerative diseases of the retina by cell replacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号