首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the ovary of adult Blattella germanica, the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) is highly expressed in mid-late vitellogenesis, suggesting a functional link of the mevalonate pathway with choriogenesis. The inhibitor of HMG-CoA reductase, fluvastatin, applied in females in late vitellogenesis, inhibits the activity of the enzyme in the ovary and in the developing embryos within the ootheca. This does not affect choriogenesis or ootheca formation but reduces the number of larvae per ootheca. Our results suggest that fluvastatin is incorporated into the oocytes and has delayed inhibitory effects on the oviposited eggs. HMG-CoA reductase is essential for embryogenesis, but not for chorion formation.  相似文献   

2.
3.
The liver plays a central role in regulating cholesterol homeostasis. High fat diets have been shown to induce obesity and hyperlipidemia. Despite considerable advances in our understanding of cholesterol metabolism, the regulation of liver cholesterol biosynthesis in response to high fat diet feeding has not been fully addressed. The aim of the present study was to investigate mechanisms by which a high fat diet caused activation of liver 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) leading to increased cholesterol biosynthesis. Mice were fed a high fat diet (60% kcal fat) for 5 weeks. High fat diet feeding induced weight gain and elevated lipid levels (total cholesterol and triglyceride) in both the liver and serum. Despite cholesterol accumulation in the liver, there was a significant increase in hepatic HMG-CoA reductase mRNA and protein expression as well as enzyme activity. The DNA binding activity of sterol regulatory element binding protein (SREBP)-2 and specific protein 1 (Sp1) were also increased in the liver of mice fed a high fat diet. To validate the in vivo findings, HepG2 cells were treated with palmitic acid. Such a treatment activated SREBP-2 as well as increased the mRNA and enzyme activity of HMG-CoA reductase leading to intracellular cholesterol accumulation. Inhibition of Sp1 by siRNA transfection abolished palmitic acid-induced SREBP-2 and HMG-CoA reductase mRNA expression. These results suggest that Sp1-mediated SREBP-2 activation contributes to high fat diet induced HMG-CoA reductase activation and increased cholesterol biosynthesis. This may play a role in liver cholesterol accumulation and hypercholesterolemia.  相似文献   

4.
5.
We examined the effects of four 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (pravastatin, simvastatin, fluvastatin, and cerivastatin) on the production and expression of inflammatory cytokines and on enzyme expression involving prostaglandin and superoxide production in cultured human umbilical vein endothelial cells (HUVEC). All HMG-CoA reductase inhibitors significantly reduced interleukin-1beta and -6 mRNA expression and their protein levels in the culture medium, and also inhibited cyclooxygenase-2 mRNA expression and their protein levels. And these drugs induced peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma mRNA expression and their protein levels in HUVEC and hepatocyte. Moreover, the mRNA levels of p22phox, a 22-kD subunit and the protein levels of p47phox, a 47-kD subunit of nicotine adenine dinucleotide phosphate (NADPH) oxidase, was decreased by treatment with either simvastatin, fluvastatin or cerivastatin, and this effect was reversed by mevalonate, geranylgeraniol, farnesol, and cholesterol. The changes induced by HMG-CoA reductase inhibitors might be due to regulation of cellular cholesterol content level, cellular cholesterol metabolic pathway, and cellular PPARalpha activity, which was related with inflammation. This unique anti-inflammatory effect in addition to its hypolipidemic action, may be beneficial in preventing the vascular complications that are induced by hyperlipidemia.  相似文献   

6.
Abstract. . 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and HMG-CoA reductase show coordinated regulation in the fat body of Blattella germanica females. Since the profile of activity is parallel to the cycle of vitellogenin production, we postulated a link between the mevalonate pathway and vitellogenesis. Here we have studied both enzymes in females of B.germanica modified by ovariectomy (which leads to a saturable accumulation of vitellogenin) and allatectomy (which supresses vitellogenesis). Protein levels and enzymatic activity for both enzymes in ovariectomized specimens rose early in the first days of imaginal life and remained high until the end of the period studied, whereas controls showed cyclic profiles. In allatectomized specimens the same parameters were measured on day 4 of adult life and values were much lower with respect to controls. The parallelism between the patterns of HMG-CoA synthase and reductase, and that of vitellogenin, suggests a functional relationship between the mevalonate pathway and the glycosylation of vitellogenin through dolichol intermediates.  相似文献   

7.
HMG-CoA reductase inhibitors, so called statins, decrease cardiac events. Previous studies have shown that HMG-CoA reductase inhibitors inhibit cardiomyocyte hypertrophy in vitro and in vivo by blocking Rho isoprenylation. We have shown that the G1 cell cycle regulatory proteins cyclin D1 and Cdk4 play important roles in cardiomyocyte hypertrophy. However, the relation between Rho and cyclin D1 in cardiomyocyte is unknown. To investigate whether HMG-CoA reductase inhibitors prevent cardiac hypertrophy through attenuation of Rho and cyclin D1, we studied the effect of fluvastatin on angiotensin II-induced cardiomyocyte hypertrophy in vitro and in vivo. Angiotensin II increased the cell surface area and [(3)H]leucine uptake of cultured neonatal rat cardiomyocytes and these changes were suppressed by fluvastatin treatment. Angiotensin II also induced activation of Rho kinase and increased cyclin D1, both of which were also significantly suppressed by fluvastatin. Specific Rho kinase inhibitor, Y-27632 inhibited angiotensin II-induced cardiomyocyte hypertrophy and increased cyclin D1. Overexpression of cyclin D1 by adenoviral gene transfer induced cardiomyocyte hypertrophy, as evidenced by increased cell size and increased protein synthesis; this hypertrophy was not diminished by concomitant treatment with fluvastatin. Infusion of angiotensin II to Wistar rats for 2 weeks induced hypertrophic changes in cardiomyocytes, and this hypertrophy was prevented by oral fluvastatin treatment. These results show that an HMG-CoA reductase inhibitor, fluvastatin, prevents angiotensin II-induced cardiomyocyte hypertrophy in part through inhibition of cyclin D1, which is linked to Rho kinase. This novel mechanism discovered for fluvastatin could be revealed how HMG-CoA reductase inhibitors are preventing cardiac hypertrophy.  相似文献   

8.
Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has recently been reported to have the antioxidative activity in vitro. However, it is still unclear whether chronic treatment with this drug actually leads to amelioration of the redox status in the body. In this study, we investigated the antioxidative effect of fluvastatin in vivo, using a vitamin E-deficient hamster model, an in vivo model of enhanced oxidative stress. After pre-treatment with a vitamin E-deficient diet for 2 months, fluvastatin, pravastatin or probucol was added to the diet for 1 month. Vitamin E deficiency caused a significant increase in the levels of plasma oxidative stress markers such as 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha) and hydroperoxides. Furthermore, there was a significant increase in the oxidizability of plasma lipids in the vitamin E-deficient animals, indicating that the oxidative stress was increased in the circulation. Fluvastatin markedly depressed the above oxidative stress markers in plasma, and significantly decreased the oxidizability of plasma lipids without affecting their levels. Probucol, a reference antioxidant, also showed a similar effect while pravastatin, another HMG-CoA reductase inhibitor, showed only a weak improvement. We suggest that the treatment with fluvastatin leads to a reduction of oxidative stress in vivo, which is mainly derived from its antioxidative property rather than its lipid-lowering activity.  相似文献   

9.
Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has recently been reported to have the antioxidative activity in vitro. However, it is still unclear whether chronic treatment with this drug actually leads to amelioration of the redox status in the body. In this study, we investigated the antioxidative effect of fluvastatin in vivo, using a vitamin E-deficient hamster model, an in vivo model of enhanced oxidative stress. After pre-treatment with a vitamin E-deficient diet for 2 months, fluvastatin, pravastatin or probucol was added to the diet for 1 month. Vitamin E deficiency caused a significant increase in the levels of plasma oxidative stress markers such as 8-iso-prostaglandin F2α (8-iso-PGF2α) and hydroperoxides. Furthermore, there was a significant increase in the oxidizability of plasma lipids in the vitamin E-deficient animals, indicating that the oxidative stress was increased in the circulation. Fluvastatin markedly depressed the above oxidative stress markers in plasma, and significantly decreased the oxidizability of plasma lipids without affecting their levels. Probucol, a reference antioxidant, also showed a similar effect while pravastatin, another HMG-CoA reductase inhibitor, showed only a weak improvement. We suggest that the treatment with fluvastatin leads to a reduction of oxidative stress in vivo, which is mainly derived from its antioxidative property rather than its lipid-lowering activity.  相似文献   

10.
The ability of mitogenic stimulation of human T lymphocytes to alter the expression of genes involved in sterol metabolism was examined. Messenger RNA levels for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, HMG-CoA synthase, and low density lipoprotein (LDL) receptor were quantified in resting and mitogen-stimulated T lymphocytes by nuclease protection assay. Mitogenic stimulation increased HMG-CoA synthase mRNA levels by 5-fold and LDL receptor by 4-fold when cells were cultured in lipoprotein-depleted medium whereas HMG-CoA reductase gene expression was not significantly increased. When cultures were supplemented with concentrations of low density lipoprotein sufficient to saturate LDL receptors, expression of all three genes was inhibited in resting lymphocytes, as effectively as was noted with fibroblasts. Similarly, LDL down-regulated gene expression in mitogen-activated lymphocytes so that mitogenic stimulation did not increase either HMG-CoA reductase or synthase mRNA levels, although LDL receptor gene expression was enhanced. These results indicate that expression of three of the genes involved in sterol metabolism is differentially regulated by LDL and mitogenic stimulation. Moreover, the increase in rates of endogenous sterol synthesis and the activity of HMG-CoA reductase in mitogen-stimulated T lymphocytes cannot be accounted for by increases in HMG-CoA reductase mRNA levels.  相似文献   

11.
Extensively purified rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase was used to examine the role of ADP in inactivation of HMG-CoA reductase (EC 1.1.1.34). Solubilized HMG-CoA reductase was a suitable substrate for HMG-CoA reductase kinase. At sufficiently high concentrations of solubilized HMG-CoA reductase, reductase kinase activity approached that measured using microsomal HMG-CoA reductase as substrate. Inactivation of solubilized HMG-CoA reductase by HMG-CoA reductase kinase required both MgATP and ADP. Other nucleoside diphosphates, including alpha, beta-methylene-ADP, could replace ADP. HMG-CoA reductase kinase catalyzed phosphorylation of bovine serum albumin fraction V by [gamma-32P]ATP. This process also required a nucleoside diphosphate (e.g. alpha, beta-methylene-ADP). Nucleoside diphosphates thus act on HMG-CoA reductase kinase, not on HMG-CoA reductase. For inactivation of HMG-CoA reductase, the ability of nucleoside triphosphates to replace ATP decreased in the order ATP greater than dATP greater than GTP greater than ITP, UTP. TTP and CTP did not replace ATP. Both for inactivation of HMG-CoA reductase and for phosphorylation of bovine serum albumin protein, the ability of nucleoside diphosphates to replace ADP decreased in the order ADP greater than CDP, dADP greater than UDP. GDP did not replace ADP. Nucleoside di- and triphosphates thus appear to bind to different sites on HMG-CoA reductase kinase. Nucleoside diphosphates act as allosteric activators of HMG-CoA reductase kinase. For inactivation of HMG-CoA reductase by HMG-CoA reductase kinase, Km for ATP was 140 microM and the activation constant, Ka, for ADP was 1.4 mM. The concentration of ADP required to modulate reductase kinase activity in vitro falls within the physiological range. Modulation of HMG-CoA reductase kinase activity, and hence of HMG-CoA reductase activity, by changes in intracellular ADP concentrations thus may represent a control mechanism of potential physiological significance.  相似文献   

12.
13.
Human blood monocytes cultured in medium containing 20% whole serum showed the greatest activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and [14C]acetate incorporation into non-saponifiable lipids around the 7th day after seeding, the period of greatest growth. Although there was enough low-density lipoprotein (LDL) in the medium to saturate the LDL receptors that were expressed by normal cells at that time, HMG-CoA reductase activity and acetate incorporation were as high in normal cells as in cells from familial-hypercholesterolaemic (FH) patients. Both the addition of extra LDL, which interacted with the cells by non-saturable processes, and receptor-mediated uptake of acetylated LDL significantly reduced reductase activity and increased incorporation of [14C]oleate into cholesteryl esters in normal cells and cells from FH patients ('FH cells'), and reduced the expression of LDL receptors in normal cells. Pre-incubation for 20h in lipoprotein-deficient medium apparently increased the number of LDL receptors expressed by normal cells but reduced the activity of HMG-CoA reductase in both normal and FH cells. During subsequent incubations the same rate of degradation of acetylated LDL and of non-saturable degradation of LDL by FH cells was associated with the same reduction in HMG-CoA reductase activity, although LDL produced a much smaller stimulation of oleate incorporation into cholesteryl esters. In normal cells pre-incubated without lipoproteins, receptor-mediated uptake of LDL could abolish reductase activity and the expression of LDL receptors. The results suggested that in these cells, receptor-mediated uptake of LDL might have a greater effect on reductase activity and LDL receptors than the equivalent uptake of acetylated LDL. It is proposed that endogenous synthesis is an important source of cholesterol for growth of normal cells, and that the site at which cholesterol is deposited in the cells may determine the nature and extent of the metabolic events that follow.  相似文献   

14.
We studied the effect of ACTH on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase enzyme. Reductase activity and reductase mass were enhanced by 22- and 6.2-fold respectively in one series of experiments, whereas in another the levels of reductase activity, reductase mass, and reductase mRNA were increased 6.6-, 3.6- and 2.2-fold respectively, following daily administration of exogenous ACTH for 3 days. Daily injection of 4-aminopyrazolopyrimidine (4-APP) to rats for 3 days increased circulating ACTH level 5.4-fold, whereas adrenal HMG-CoA reductase activity, reductase mass and reductase mRNA levels were greatly increased 36-, 10- and 16-fold, respectively. To counteract the effect of elevated plasma ACTH, dexamethasone acetate (Dex) was administered to 4-APP treated rats. At 3 h post Dex administration, plasma ACTH and corticosteroids levels were effectively decreased by 58 and 59%, respectively. The levels of adrenal HMG-CoA reductase mRNA, reductase activity and reductase mass were also diminished by 38, 31 and 40%, respectively. Our results show that rat adrenal HMG-CoA reductase can respond rapidly to hormonal changes, presumably through variations in circulating ACTH levels.  相似文献   

15.
In hypophysectomized rats, hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, immunoreactive 97-kilodalton (97-kDa) protein, and mRNA were all reduced to undetectable levels. Administration of triiodothyronine (T3) resulted in large increases in all three after a 36-h lag period. HMG-CoA reductase activity, immunoreactive 97-kDa protein levels, and reductase mRNA levels were tightly correlated. Feeding hypophysectomized rats diets containing the bile acid sequestrant colestipol, together with the potent reductase inhibitor mevinolin, resulted in an increase in HMG-CoA reductase activity similar to that seen with T3 but a lesser stimulation of reductase mRNA levels. These results suggest that agents which cause depletion of mevalonate-derived products may share in part with T3 a common mechanism for increasing levels of HMG-CoA reductase activity in order to satisfy cellular needs for these products. Dexamethasone treatment, which is known to prevent the T3-mediated stimulation of reductase activity, caused a marked decrease in 97-kDa immunoreactive material but had little effect on reductase mRNA levels.  相似文献   

16.
Prior work from this laboratory characterized eukaryotic (hamster) and eubacterial (Pseudomonas mevalonii) 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases. We report here the characterization of an HMG-CoA reductase from the third domain, the archaea. HMG-CoA reductase of the halobacterium Haloferax volcanii was initially partially purified from extracts of H. volcanii. Subsequently, a portion of the H. volcanii lovastatin (formerly called mevinolin) resistance marker mev was subcloned into the Escherichia coli expression vector pT7-7. While no HMG-CoA reductase activity was detectable following expression in E. coli, activity could be recovered after extracts were exposed to 3 M KCl. Following purification to electrophoretic homogeneity, the specific activity of the expressed enzyme, 24 microU/mg, equaled that of homogeneous hamster or P. mevalonii HMG-CoA reductase. Activity was optimal at pH 7.3. Kms were 66 microM (NADPH) and 60 microM [(S)-HMG-CoA]. (R)-HMG-CoA and lovastatin inhibited competitively with (S)-HMG-CoA. H. volcanii HMG-CoA reductase also catalyzed the reduction of mevaldehyde [optimal activity at pH 6.0; Vmax 11 microU/mg; Kms 32 microM (NADPH), 550 microM [(R,S)-mevaldehyde]] and the oxidative acylation of mevaldehyde [optimal activity at pH 8.0; Vmax 2.1 microU/mg; Kms 350 microM (NADP+), 300 microM (CoA), 470 microM [(R,S)-mevaldehyde]]. These properties are comparable to those of hamster and P. mevalonii HMG-CoA reductases, suggesting a similar catalytic mechanism.  相似文献   

17.
Rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was purified to homogeneity using agarose-HMG-CoA affinity chromatography. Additional protein was isolated from the affinity column with 0.5 M KCl that demonstrated no HMG-CoA reductase activity, yet comigrated with purified HMG-CoA reductase on sodium dodecyl sulfate-polyacrylamide gels. This protein was determined to be an inactive form of HMG-CoA reductase by tryptic peptide mapping, reaction with anti-HMG-CoA reductase antibody, and coelution with purified HMG-CoA reductase from a molecular-sieving high-performance liquid chromatography column. This inactive protein was present in at least fourfold greater concentration than active HMG-CoA reductase, and could not be activated by rat liver cytosolic phosphoprotein phosphatases. Immunotitration studies with microsomal and solubilized HMG-CoA reductase isolated in the presence and absence of proteinase inhibitors suggested that the inactive protein was not generated from active enzyme during isolation of microsomes or freeze-thaw solubilization of HMG CoA reductase.  相似文献   

18.
The effects of glycosylation inhibitors on the proliferation of SV40-transformed 3T3 cells (SV-3T3) were examined in vitro. Whereas swainsonine and castanospermine, which inhibit distal steps in the glycosylational processing, exerted marginal or no effects on cell proliferation, a proximal inhibitor, tunicamycin, efficiently decreased the rate of DNA synthesis and also inhibited the activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase. The inhibitory effects of tunicamycin on cell proliferation could be partially reversed by addition of dolichol, a metabolite in the pathway regulated by HMG-CoA reductase. This finding suggests that tunicamycin exerts at least one of its effects on cell proliferation by modulating the activity of HMG-CoA reductase.  相似文献   

19.
The importance of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) in the regulation of sesquiterpenoid phytoalexin accumulation in potato (Solanum tuberosum L. cv Kennebec) was examined. Wounding of potato tubers produced a large temporary increase in HMG-CoA reductase activity of the microsomal and organelle fractions. Treatment of wounded tuber tissue with the sesquiterpenoid phytoalexin elicitor arachidonic acid further increased and prolonged the HMG-CoA reductase activity in the microsomal but not the organelle fraction. Incubation of elicitor-treated tuber tissue in white light reduced organelle and microsomal HMG-CoA reductase activity to 50% and 10%, respectively, of the activity of tissues held in darkness. Constant light also reduced overall phytoalexin accumulation 58% by greatly reducing levels of lubimin. Rishitin accumulation was not significantly altered by light. Application of nanomolar amounts of mevinolin, a highly specific inhibitor of HMG-CoA reductase, to elicitor-treated tuber tissue produced a large decline in lubimin accumulation and did not markedly alter rishitin accumulation. These results indicate that HMG-CoA reductase has a role in the complex regulation of sesquiterpenoid phytoalexin accumulation in potato.  相似文献   

20.
—The distribution of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) relative to that of several biochemical markers has been studied in subcellular fractions prepared from the brains of rats, aged 4 days to adult, by differential centrifugation. In the brains of 10-day-old animals fractions which sedimented at 800 g (P1 and 9000 g (P2) contained 28% and 65% respectively of the total reductase activity. A similar distribulion of the microsomal marker, NADPH-cytochrome c reductase, suggested that the HMG-CoA reductase activity in the low-speed pellets was due to substantial contamination of these fractions with endoplasmic reticulum. When P2 was fractionated on a discontinuous sucrose gradient, the distributions of protein, RNA and NADPH-cytochrome c reductase paralleled that of HMG-CoA reductase, indicaling a non-specific association of endoplasmic reliculum and HMG-CoA reductase with all of the structures sedimenting in P2. As brain maturation proceeded and a greater percentage of total brain protein (primarily associated with myelin) sedimenled in P1, the subcellular distributions of HMG-CoA reductase and the microsomal marker changed in a parallel way. By 21 days P1 contained nearly all of the reductase activity. Because the specific activity of HMG-CoA reductase in P1 decreased steadily between 4 and 21 days, while the specific activity of 2′:3′-cyclic nucleotide 3′-phosphohydrolase in this fraction increased in a coordinate fashion, we conclude that the reductase is not an integral component of myelin, and probably is associated exclusively with the endoplasmic reticulum included in P1. In view of the developmental changes in the distribution of HMG-CoA reductase among subcellular fraclions, we suggest that whole homogenates (or comparable tissue extracts) should be utilized to evaluate reductase activity in the developing brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号