首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
L-phe 是重要的食品和医药中间体,用大肠杆菌发酵葡萄糖生成 phe 时,对葡糖糖转运起重要作用的磷酸烯醇丙酮酸糖磷酸转移酶系统(PTS)对 phe 产量合成有很大影响,在大肠杆菌 PTS 系统中,葡糖糖主要由 ptsG 基因编码的葡萄糖特异性转运蛋白酶ⅡCBGlc转运入细胞,通过基因敲除技术获取ptsG缺陷菌株,可以减少菌株对葡糖糖的摄取,减少乙酸的生成,利于菌株的高密度发酵和相关代谢中间物获得.利用 Red 同源重组技术将大肠杆菌染色体上的 ptsG 基因进行敲除,得到 PTS 缺陷菌株 MD-ptsG-.该菌株在以葡萄糖为惟一碳源的培养基中摇瓶培养,菌密度为对照菌株的3.5倍,L-phe 产量提高12%.  相似文献   

2.
L-phe是重要的食品和医药中间体,用大肠杆菌发酵葡萄糖生成phe时,对葡糖糖转运起重要作用的磷酸烯醇丙酮酸糖磷酸转移酶系统(PTS)对phe产量合成有很大影响,在大肠杆菌PTS系统中,葡糖糖主要由ptsG基因编码的葡萄糖特异性转运蛋白酶ⅡCBGlc转运入细胞,通过基因敲除技术获取ptsG缺陷菌株,可以减少菌株对葡糖糖的摄取,减少乙酸的生成,利于菌株的高密度发酵和相关代谢中间物获得。利用Red同源重组技术将大肠杆菌染色体上的ptsG基因进行敲除,得到PTS缺陷菌株MD-ptsG-。该菌株在以葡萄糖为惟一碳源的培养基中摇瓶培养,菌密度为对照菌株的3.5倍,L-phe产量提高12%。  相似文献   

3.
利用代谢工程手段理性改造野生大肠杆菌的莽草酸(Shikimic acid,SA)合成途径及相关代谢节点,以构建高产莽草酸的工程菌株.根据细胞代谢网络分析,利用Red-Xer重组系统连续删除了野生型大肠杆菌CICIMB0013的莽草酸激酶基因(aroL、aroK),葡萄糖磷酸转移酶系统(PTS)的关键组分EIICBglc的编码基因(ptsG)以及奎宁酸/莽草酸脱氢酶基因(ydiB)并系统评价了基因删除对细胞的生长、葡萄糖代谢和莽草酸积累的影响.aroL、aroK的删除阻断了莽草酸进一步转化成为莽草酸-3-磷酸,初步提高莽草酸的累积.删除ptsG基因使大肠杆菌PTS系统部分缺失,细胞通过GalP-glk(半乳糖透性酶-葡萄糖激酶)途径,利用ATP将葡萄糖磷酸化后进入细胞.利用该途径运输葡萄糖能够减少PEP的消耗,使得更多的碳代谢流进入莽草酸合成途径,从而显著提高了莽草酸的产量.在此基础上删除ydiB基因,阻止了莽草酸合成的前体物质3-脱氢奎宁酸转化为副产物奎宁酸(Quinic acid,QA),进一步提高了莽草酸的累积.初步发酵显示4个基因缺失的大肠杆菌代谢工程菌生产莽草酸的能力比原始菌提高了90多倍.  相似文献   

4.
敲除大肠杆菌磷酸烯醇式丙酮酸-糖磷酸转移酶系统(简称PTS系统)ptsHIcrr操纵子,考察敲除菌株生长特性并将其与ptsG敲除菌进行比较。利用I-SceⅠ特异性切割和Red同源重组方法成功构建了大肠杆菌DH5α△ptsHIcrr敲除菌。在LB培养基中,DH5α△ptsHIcrr的生长行为与DH5α和DH5α△ptsG明显不同,其最高菌密度是DH5α和DH5α△ptsG的近2倍,而DH5α△ptsG生长行为与DH5α无明显差异。但在含1%葡萄糖的LB中,DH5α△ptsHIcrr和DH5α△ptsG均表现出生长优势,最高菌密度依次是DH5α的2.8和2倍;培养液中最终乙酸含量分别是DH5α的12.2%、47%。在M9修饰培养基中,DH5α△ptsHIcrr比生长速率(1/h)和比葡萄糖消耗速率[g/(g.h)]明显低于DH5α,并略低于DH5α△ptsG。结果说明,ptsHIcrr操纵子敲除菌改变了葡萄糖的代谢速率,并呈现与ptsG基因敲除菌不同的代谢特点。  相似文献   

5.
目的:敲除大肠杆菌DH5α中与葡萄糖磷酸化转运相关的ptsG、ptsM基因,考察缺陷株生长特性及其可能的应用。方法:PCR扩增靶基因,构建两翼带有靶基因序列并嵌合抗药基因标记的线性片段,利用Red同源重组技术敲除靶基因。结果:成功敲除了大肠杆菌DH5α的ptsG和ptsM基因;在含有葡萄糖的LB培养基中,DH5αΔptsG最高菌密度是亲本的2.8倍,添加吡咯喹啉醌或导入其生物合成基因后能够产酸;DH5αΔptsM最高菌密度是亲本的4/10,有明显的产酸现象。结论:DH5αΔptsG可用于大肠杆菌高密度发酵和吡咯喹啉醌生物合成基因缺陷株筛选。  相似文献   

6.
L-苯丙氨酸(L-phenylalanine)是重要的食品和医药中间体。利用大肠杆菌发酵葡萄糖生产苯丙氨酸时,对葡萄糖转运起重要作用的磷酸烯醇丙酮酸糖磷酸转移酶系统(PTS)对苯丙氨酸产量有很大影响。由ptsHI-crr操纵子编码的磷酸组氨酸载体蛋白(HPr),酶I(EI)和酶IIAGlc是PTS的必要组分,通过敲除ptsHI-crr得到PTS缺陷菌株,可以使葡萄糖代谢更多地流向苯丙氨酸生物合成。采用Red同源重组技术将大肠杆菌染色体上的ptsHI-crr基因替换为四环素抗性基因,得到PTS缺陷菌株。该菌株在以葡萄糖为惟一碳源的培养基中摇瓶培养,菌密度为对照菌株的2.7倍,苯丙氨酸产量为对照菌株的6.3倍。  相似文献   

7.
为明晰葡萄糖非PTS转运系统相关基因对木糖利用效率的影响,探讨葡萄糖PTS和非PTS转运系统是否对木糖利用存在协同影响,以大肠杆菌工程菌SZ470和SZ470P为出发菌株,通过RED同源重组技术敲除葡萄糖转运基因mglB,构建mglB单缺陷菌SZ470M和ptsG/mglB双缺陷菌SZ470PM。比较四株菌的混合糖(3%葡萄糖+2%木糖)发酵情况以及木糖转运代谢相关基因的转录水平。实验结果表明,SZ470M相较于出发菌株SZ470,其发酵性能无明显变化;SZ470PM的木糖消耗速度为0.37 g/L,乙醇产量为23.25 g/L,转化率为82.6%,相比于出发菌株SZ470P分别提高了32%,9.8%和5.8%。基因转录水平的分析也表明菌株SZ470P和SZ470PM的木糖转运与代谢基因的转录水平上调。综上,ptsG和mglB基因的双敲除对木糖利用效率的提高有协同影响,为促进木质纤维素作为发酵原料时木糖的高效利用提供理论依据。  相似文献   

8.
大肠杆菌ptsG基因敲除及其缺陷株生长特性研究   总被引:9,自引:1,他引:8       下载免费PDF全文
在大肠杆菌磷酸转移酶系统中,葡萄糖主要由ptsG基因编码的酶ⅡCB^Glc转运入细胞。利用代谢工程技术构建ptsG基因缺陷株,有望降低葡萄糖的摄取速率,减少乙酸累积,促进菌体生长。运用PCR技术,扩增出两翼与ptsG基因上下游序列同源,中间为氯霉素抗性基因的DNA片段。经电转化,将外源DNA片段分别转入Escherichia coli DH5a、JM109中。在Red重组酶的作用下,外源DNA片段与染色体上同源区域重组,将基因ptsG敲除,构建ptsG基因缺陷株:DH5αP,JM109P。在LB培养基中,ptsG基因缺陷株的生长状况与亲株无明显差异。在含有葡萄糖的LB培养基中,DH5αP、JM109P的最高菌密度分别是对照菌株DH5α,JM109的3.47倍和4.25倍,ptsG基因缺陷株对葡萄糖的摄入量也明显高于对照菌株。重组蛋白肿瘤坏死因子(TNF)在DH5αP、JM109P中的表达量分别占全菌蛋白的24.3%、20.8%,A600分别为8.28、7.62,TNF在缺陷株中单位体积的表达量明显高于对照菌株。以上结果说明,大肠杆菌ptsG基因缺陷株具有良好的生长能力和表达外源蛋白的能力,在大肠杆菌高密度发酵研究方面具有良好的应用前景。  相似文献   

9.
莽草酸是芳香族氨基酸合成中的重要中间产物,具有广泛的药用价值,是抗流感药物"达菲"的重要合成前体。微生物发酵生产莽草酸具有许多优点,其中大肠杆菌常用于微生物大规模发酵生产应用。通过对大肠杆菌进行代谢工程改造,是构建工业化莽草酸高产菌的主要技术手段。磷酸烯醇式丙酮酸-糖磷酸转移酶系统(phosphoenolpyruvate:carbohydrate phosphotransferase system,PTS)是大肠杆菌细胞内参与葡萄糖从膜间质转运和磷酸化到胞内的主要活性转运系统,影响莽草酸合成前体磷酸烯醇式丙酮酸(PEP)的利用率。通过对PTS系统的定向修饰和改造,调节细胞内代谢流向,提高碳源利用率,增加莽草酸前体合成量,结合对代谢途径中的特定修饰,能够构建出较为理想的莽草酸高产菌。研究显示在10 L放大体系中最佳产率可达0.36 mol/mol,莽草酸浓度可达84 g/L。本文针对代谢改造中莽草酸途径和葡萄糖转运系统的改造方面进行简单概述,并综述了近年来有关此方面的最新研究进展。  相似文献   

10.
旁支代谢途径的截断有利于目的氨基酸合成途径的集流。基于基因组尺度代谢网络模型的预测,以钝齿棒杆菌(Corynebacterium crenatum)MT-M4为出发菌株,通过无痕敲除技术分别敲除了编码磷酸乙酰基转移酶的pta基因及编码乙酸激酶的ack基因,阻断了乙酸的合成。摇瓶发酵结果表明,pta缺失菌株精氨酸产量较出发菌株提高了25.60%,达15.46g/L。葡萄糖转化率提高了29.41%;ack缺失菌株精氨酸产量达13.82g/L,较出发菌株提高了12.81%,葡萄糖转化率提高了26.02%。同时,pta及ack敲除菌株的细胞生长较出发菌株均分别提高了9.19%及7.71%。因此,pta、ack的敲除不仅有利于精氨酸的合成,而且对菌体生长具有促进作用;但pta的敲除更有利于精氨酸的积累。  相似文献   

11.
Glucose is taken up in Bacillus subtilis via the phosphoenolpyruvate:glucose phosphotransferase system (glucose PTS). Two genes, orfG and ptsX, have been implied in the glucose-specific part of this PTS, encoding an Enzyme IIGlc and an Enzyme IIIGlc, respectively. We now show that the glucose permease consists of a single, membrane-bound, polypeptide with an apparent molecular weight of 80,000, encoded by a single gene which will be designated ptsG. The glucose permease contains domains that are 40-50% identical to the IIGlc and IIIGlc proteins of Escherichia coli. The B. subtilis IIIGlc domain can replace IIIGlc in E. coli crr mutants in supporting growth on glucose and transport of methyl alpha-glucoside. Mutations in the IIGlc and IIIGlc domains of the B. subtilis ptsG gene impaired growth on glucose and in some cases on sucrose. ptsG mutants lost all methyl alpha-glucoside transport but retained part of the glucose-transport capacity. Residual growth on glucose and transport of glucose in these ptsG mutants suggested that yet another uptake system for glucose existed, which is either another PT system or regulated by the PTS. The glucose PTS did not seem to be involved in the regulation of the uptake or metabolism of non-PTS compounds like glycerol. In contrast to ptsl mutants in members of the Enterobacteriaceae, the defective growth of B. subtilis ptsl mutants on glycerol was not restored by an insertion in the ptsG gene which eliminated IIGlc. Growth of B. subtilis ptsG mutants, lacking IIGlc, was not impaired on glycerol. From this we concluded that neither non-phosphorylated nor phosphorylated IIGlc was acting as an inhibitor or an activator, respectively, of glycerol uptake and metabolism.  相似文献   

12.
13.
Reduction of acetate excretion using a modified cellular glucose uptake rate was examined. An Escherichia coli strain bearing a mutationin ptsG, a gene encoding enzyme II in glucose phosphotransferase system (PTS), was constructed and characterized. The growth rate of the mutant strain was slower than its parent in glucose defined medium, butwas not affected in complex medium. Experimental results using this mutant strain showed a significant improvement in culture performance in simple batch cultivations due to reduced acetate excretion through the modified glucose uptake. Both biomass and recombinant protein productivity were increased by more than 50% with the ptsG mutant when compared to the parent strain. Recombinant protein productivity by the newly constructed strain at a level of more than 1.6 g/L was attained consistently in a simple batch bioreactor. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
We have surveyed the publicly available genome sequence of Corynebacterium diphtheriae (www.sanger.ac.uk) to identify components of the phosphotransferase system (PTS), which plays a central role in carbon metabolism in many bacteria. Three gene loci were found to contain putative pts genes. These comprise: (i) the genes of the general phosphotransferases enzyme I (ptsI) and HPr (ptsH), a fructose-specific enzyme IIABC permease (fruA), and a fructose 1-phosphate kinase (fruK); (ii) a gene that encodes an enzyme IIAB of the fructose/mannitol family, and a novel HPr-like gene, ptsF, that encodes an HPr domain fused to a domain of unknown function; (iii) and a gene for a glucose-specific enzyme IIBCA (ptsG). A search for genes that may be putative PTS-targets or that may operate in general carbon regulation revealed a possible regulatory gene encoding an antiterminator protein downstream from ptsG. Furthermore, genes were detected encoding glycerol kinase, glucose kinase, and a homologue of the global activator of carbon catabolite repression in Escherichia coli, CAP. The possible significance of these observations in carbon metabolism and the novel features of the detected genes are discussed.  相似文献   

15.
16.
Escherichia coli NZN111 is blocked in the ability to grow fermentatively on glucose but gave rise spontaneously to a mutant that had this ability. The mutant carries out a balanced fermentation of glucose to give approximately 1 mol of succinate, 0. 5 mol of acetate, and 0.5 mol of ethanol per mol of glucose. The causative mutation was mapped to the ptsG gene, which encodes the membrane-bound, glucose-specific permease of the phosphotransferase system, protein EIICB(glc). Replacement of the chromosomal ptsG gene with an insertionally inactivated form also restored growth on glucose and resulted in the same distribution of fermentation products. The physiological characteristics of the spontaneous and null mutants were consistent with loss of function of the ptsG gene product; the mutants possessed greatly reduced glucose phosphotransferase activity and lacked normal glucose repression. Introduction of the null mutant into strains not blocked in the ability to ferment glucose also increased succinate production in those strains. This phenomenon was widespread, occurring in different lineages of E. coli, including E. coli B.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号