首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
棉花成熟与衰老的影响因素及其调控策略   总被引:3,自引:0,他引:3  
生长发育、成熟衰老的合理调控是贯穿棉花生产始终的重要问题之一,直接影响棉花的产量和品质。本文从不同方面分析了影响棉花成熟与衰老的因素,阐述了棉花成熟衰老与其遗传特性、生长发育状况、营养状况、种植管理条件及遭受的逆境胁迫和病虫害侵染等有关。此外,侧重介绍了我国棉花成熟衰老调控的主要策略,即棉花种植区划与棉花种植品种熟性的相宜性、棉花生长发育的化学调控和"库源"比例调节、棉花早衰的系统防控技术和脱叶催熟技术等。在此基础上,展望了进一步加强棉花成熟衰老相关领域的基础研究,以合理有效调控棉花生长发育、成熟衰老的过程。  相似文献   

2.
华北棉区棉田中棉铃虫的取食行为及为害特征的研究   总被引:7,自引:1,他引:6  
翟连荣  丁岩钦 《昆虫学报》1992,35(3):257-266
在大量田间实验的基础上,本文揭示华北棉区棉铃虫Heliothis armigera(Hbner)在棉田中的取食行为及其咬食棉花不同发育阶段的繁殖器官的组成和数量.根据棉铃虫的取食行为与其寄主植物棉花生长发育的关系,分别列出第二、三、四代幼虫期内棉花全株上各发育阶段的繁殖器官的组成、各龄幼虫所在果枝上繁殖器官的组成、各龄幼虫咬食不同发育阶段繁殖器官的组成和数量以及其中脱落的数量.分析了不同世代幼虫取食行为的差异,及其对棉花生长发育和产量形成过程的影响.建立了用于棉田害虫管理系统的棉铃虫取食模型.  相似文献   

3.
麦套春棉对棉花生态环境及生长影响的研究   总被引:4,自引:0,他引:4  
对麦套春棉环境和棉株生长发育进行研究,结果表明:热、光、水资源的竞争是造成棉花苗弱、迟发的主要原因,其中热量尤为主要。因此,麦套春棉应采用地膜覆盖,增另有效地积温,以补偿作物层和耕层土壤热量亏缺。麦人生期,套种棉行生态环境和棉株生长发育显著受到小麦的遮荫和蔼和遮荫时间的影响。此种遮荫程度,随着小麦株高的增加而加重,随着麦棉间距的加大而减轻。遮荫时间也随着小麦成熟期的推迟而延长。因此,麦套春棉棉间距  相似文献   

4.
【背景】现今棉花黄萎病严重阻碍棉花的稳定高产,妨碍棉花产业的发展。在生物防治中内生菌潜力巨大,但关于内生古菌含量在棉花黄萎病棉株的变化规律鲜有报道。【目的】研究不同生育期以及不同植棉地区黄萎病棉株和健康棉株内生古菌的分类学信息和数量变化规律。【方法】采用Miseq高通量测序和taqMan探针实时荧光定量PCR技术,对新疆棉花黄萎病棉株、健康棉株不同生育期和不同典型生态区的内生古菌进行定量分析。【结果】内生古菌在新疆各采样地和不同生育期的棉花黄萎病棉株、健康棉株内的群落组成相似。在不同生育期,新疆黄萎病、健康棉株内生古菌数量呈先增加后减少然后趋于平缓的趋势,蕾期达到最高值。在不同地区,新疆黄萎病棉株内生古菌数量在北疆地区最高,其次是东疆地区,最后是南疆地区。健康棉株则是南疆地区最高,东疆次之,北疆最低。【结论】新疆黄萎病棉株、健康棉株内生古菌数量在不同的生育期以及不同空间存在较大差异,整体变化趋势显著,可为后续研究提供相关理论支撑。  相似文献   

5.
转基因抗早衰棉的获得   总被引:5,自引:0,他引:5  
利用花粉管通道技术将含有抑制衰老嵌合基因PCSAG12-ipt的pBG121质粒转入早衰型陆地棉品种中棉所10号中,通过对T1代植株进行卡那霉素田间筛选、PCR检测及GUS组织化学染色,获得了12株转基因棉花。在棉花发育进入衰老时期,对转基因植株进行叶绿素和细胞分裂素含量的测定及形态观察,结果表明转基因植株的衰老得到延迟。  相似文献   

6.
液体地膜覆盖对棉花根系生长发育的影响   总被引:6,自引:0,他引:6  
基于棉田可持续发展的思想,利用茚三酮法、钼蓝法及土壤双向切片法,研究了液体地膜覆盖对棉花根系生长发育的影响。结果表明,覆盖棉花前期根系生长发育加快,表现为根系活力增强,根系干重较大,但覆盖不利于棉花根系下扎,土壤深层根系衰减较快。与塑料地膜覆盖相比,液体地膜覆盖增强根系吸收与合成能力的效应在棉花各生育阶段均较明显,根系在土壤内分布较为合理,土壤深层根系衰减较慢,更有利于棉株均衡生长发育,防止棉花早衰。在棉花生产上,采用液体地膜覆盖栽培是一项可行技术.  相似文献   

7.
棉花是一种重要的经济作物.我国栽培棉花的地区分布很广:从东南的海南岛到西北的新疆,从西南的云南到东北的辽宁,都有棉花的栽培.产棉最多的是华北各省和长江中下游地带.淮河以北的棉区,种棉花一般都是一年一熟的栽培制度;淮河以南长江流域棉区,则大部是棉花和豆、麦、绿肥等一年两熟的栽培制度.南方云南、广西、广东等省,并有多年生木棉的栽培.  相似文献   

8.
关于土壤水分状况对植物体内含糖量的影响,已有综合报告,但对不同水分条件下碳水化合物含量变化的原因,学者们的解释不同。本文对不同土壤水分条件下,棉株体内糖的积累变化进行了分析,希望有助于对土壤缺水时棉株生长发育不良和棉花蕾铃脱落生理机制的了解。  相似文献   

9.
蕾期土壤盐度降低后棉花生长发育的补偿效应   总被引:1,自引:0,他引:1  
采用盆栽方法,将棉花蕾期土壤含盐量由5‰降低到2‰,研究蕾期土壤盐度降低后棉花生长发育特征及其对产量形成的影响.结果表明:土壤盐度降低后,棉花株高、各器官干物质累积量、果枝和果节量及成铃数增加;各器官干物质的分配比例发生改变,根系和蕾、花铃干物质分配系数降低,叶片和茎枝干物质分配系数升高.土壤盐度降低后棉花生长速率加快,在土壤盐度降低后22 d,棉株干物质累积速率超过低盐对照;不同器官对土壤盐度降低的响应存在差异,株高表现最早,果枝和果节形成次之,蕾铃最晚,说明土壤盐度降低后,补偿生长首先表现在叶片、果枝和果节等器官的形成上,然后实现对产量的补偿.  相似文献   

10.
本研究比较了转Bt Cry1Ac+CP_4EPSPS基因抗棉铃虫抗草甘膦棉花与常规棉花在新疆棉区对草甘膦的耐受性差异。两年的研究结果表明,转Bt Cry1Ac+CP_4EPSPS基因抗棉铃虫抗草甘膦棉花对草甘膦有较好的耐受性,而对照棉花中棉所49对草甘膦耐受性较差。苗期喷施草甘膦后转基因抗棉铃虫抗草甘膦棉花生长发育没有受到影响,而对照棉花中棉所49喷施草甘膦后生长发育受到了明显的影响,个别植株甚至死亡。转Bt Cry1Ac+CP_4EPSPS基因抗棉铃虫抗草甘膦棉花株高、真叶数、蕾数、产量等指标与对照相比差异显著。转Bt Cry1Ac+CP_4EPSPS基因棉花对草甘膦的耐受程度显著高于非转基因棉花。草甘膦对转基因抗草甘膦棉花无负面影响。  相似文献   

11.
植物衰老期间生理生化变化的研究进展   总被引:15,自引:0,他引:15  
马林 《生物学杂志》2007,24(3):12-15
植物衰老是受内外因素控制的细胞有序降解并最终导致死亡的过程,衰老期间会出现与正常生长阶段不同的生理生化变化。植物衰老引起的各种功能的下降极大地限制了作物产量潜力的发挥,种子贮存过程中的衰变、逆境条件下植株的早衰、果蔬采后贮藏衰老导致货架寿命的缩短等均会造成极大的经济损失。研究植物衰老的生理机制及其调控具有十分重要的意义。综述了有关植物衰老时生理生化变化方面的近期研究进展,以利于人们对植物衰老生理的更深入的了解。  相似文献   

12.
水稻叶片早衰成因及分子机理研究进展   总被引:1,自引:0,他引:1  
植物叶片衰老是叶片发育的最终阶段,也是植物在长期进化过程中形成的适应性机制。水稻(Oryza sativa)叶片的衰老对其产量和品质影响极大,相关研究主要集中在早衰。该文综述了水稻早衰及其调控基因的研究进展,尤其对水稻叶片早衰的形成原因、发生过程、生理变化及防治措施进行了阐述,以期为深入解析水稻早衰的分子机制奠定理论基础,同时为水稻育种提供参考。  相似文献   

13.
Ageing or senescence is an intricate and highly synchronized developmental phase in the life of plant parts including leaf. Senescence not only means death of a plant part, but during this process, different macromolecules undergo degradation and the resulting components are transported to other parts of the plant. During the period from when a leaf is young and green to the stage when it senesces, a multitude of factors such as hormones, environmental factors and senescence associated genes (SAGs) are involved. Plant hormones including salicylic acid, abscisic acid, jasmonic acid and ethylene advance leaf senescence, whereas others like cytokinins, gibberellins, and auxins delay this process. The environmental factors which generally affect plant development and growth, can hasten senescence, the examples being nutrient dearth, water stress, pathogen attack, radiations, high temperature and light intensity, waterlogging, and air, water or soil contamination. Other important influences include carbohydrate accumulation and high carbon/nitrogen level. To date, although several genes involved in this complex process have been identified, still not much information exists in the literature on the signalling mechanism of leaf senescence. Now, the Arabidopsis mutants have paved our way and opened new vistas to elucidate the signalling mechanism of leaf senescence for which various mutants are being utilized. Recent studies demonstrating the role of microRNAs in leaf senescence have reinforced our knowledge of this intricate process. This review provides a comprehensive and critical analysis of the information gained particularly on the roles of several plant growth regulators and microRNAs in regulation of leaf senescence.  相似文献   

14.
Plant senescence     
Senescence is defined by evolutionary biologists as the decline in age-specific survival and fecundity that reflects declines in the performance of many different physiological functions in individuals of sufficiently advanced age. Senescence is widely recognized to occur among plants with a single reproductive event, but the extent to which senescence occurs among plants with multiple reproductive events is open to debate. The latter may show gradual or even negligible senescence. The pattern of senescence cannot readily be ascribed to either morphology or phylogeny. While it has been widely argued that clonal growth allows plants to escape senescence, this is not necessarily the case.  相似文献   

15.
The effect of different hermetic and non-hermetic closure-types (aluminum foil, cotton bung, cotton plug, polypropylene cap and Steristopper) on potato (Solanum tuberosum L.) plantlets growth and chlorophyll contents was studied in three genotypes belonging to different maturity groups. Plantlets grown in culture tubes closed with aluminum foils and polypropylene caps had higher fresh mass and shoot length, but lower chlorophyll contents, higher senescence index and various morphological abnormalities. Non-hermetic closures like cotton plugs and Steristoppers were found optimum for plant growth without any morphological abnormalities. Besides, these plantlets exhibited low senescence index and had higher chlorophyll contents that favour acclimation to ex vitro conditions.  相似文献   

16.
Senescence is the final stage of plant ontogeny before death. Senescence may occur naturally because of age or may be induced by various endogenous and exogenous factors. Despite its destructive character, senescence is a precisely controlled process that follows a well‐defined order. It is often inseparable from programmed cell death (PCD), and a correlation between these processes has been confirmed during the senescence of leaves and petals. Despite suggestions that senescence and PCD are two separate processes, with PCD occurring after senescence, cell death responsible for senescence is accompanied by numerous changes at the cytological, physiological and molecular levels, similar to other types of PCD. Independent of the plant organ analysed, these changes are focused on initiating the processes of cellular structural degradation via fluctuations in phytohormone levels and the activation of specific genes. Cellular structural degradation is genetically programmed and dependent on autophagy. Phytohormones/plant regulators are heavily involved in regulating the senescence of plant organs and can either promote [ethylene, abscisic acid (ABA), jasmonic acid (JA), and polyamines (PAs)] or inhibit [cytokinins (CKs)] this process. Auxins and carbohydrates have been assigned a dual role in the regulation of senescence, and can both inhibit and stimulate the senescence process. In this review, we introduce the basic pathways that regulate senescence in plants and identify mechanisms involved in controlling senescence in ephemeral plant organs. Moreover, we demonstrate a universal nature of this process in different plant organs; despite this process occurring in organs that have completely different functions, it is very similar. Progress in this area is providing opportunities to revisit how, when and which way senescence is coordinated or decoupled by plant regulators in different organs and will provide a powerful tool for plant physiology research.  相似文献   

17.
Leaf senescence and activities of the antioxidant enzymes   总被引:1,自引:0,他引:1  
Senescence is a genetically regulated process that involves decomposition of cellular structures and distribution of the products of this degradation to other plant parts. Reactions involving reactive oxygen species are the intrinsic features of these processes and their role in senescence is suggested. The malfunction of protection against destruction induced by reactive oxygen species could be the starting point of senescence. This article reviews biochemical changes during senescence in relation to reactive oxygen species and changes in antioxidant protection.  相似文献   

18.
Senescence is a form of cellular aging that limits the proliferative capacity of cells. Senescence can be triggered by different stress stimuli, such as DNA damage or oncogene activation. Two recent articles published in Cell have uncovered an unexpected role for cellular senescence during development, as a process that contributes to remodeling and patterning of the embryo. These findings are exciting and have important implications for the understanding of normal developmental and the evolutionary origin of senescence.  相似文献   

19.
Reactive oxygen species are known to increase in plant senescence. We investigated the participation of antioxidative enzymes in initiation of cotyledon senescence. Senescence of bean (Phaseolus vulgaris L.) cotyledons was modulated by UV C irradiation and by the decapitation of plant apices. Senescence was accompanied by a decrease of protein content and by a decrease of photochemical efficiency. A drop in activity of antioxidative enzymes preceded the onset of senescence in control plants. In cotyledons with prolonged life span, the decrease of antioxidant activities and the markers of senescence onset appeared at a similar age as in controls. Thus we presumed that the period from senescence initiation to cotyledon abscission was extended. On the other hand, in UV C irradiated plants we did not observe actual senescence initiation, and antioxidant enzymes although elevated, did not effectively play their role. The decrease of antioxidant enzymes activity and the markers of senescence appeared at a similar age both in control and in decapitated (D) plants, so we can presume that we prolonged mainly the period from senescence onset to cotyledon abscission in D plants. In UV C irradiated plants the antioxidative enzymes were probably destroyed before the process of senescence could begin.  相似文献   

20.
The molecular analysis of leaf senescence--a genomics approach   总被引:2,自引:0,他引:2  
Senescence in green plants is a complex and highly regulated process that occurs as part of plant development or can be prematurely induced by stress. In the last decade, the main focus of research has been on the identification of senescence mutants, as well as on genes that show enhanced expression during senescence. Analysis of these is beginning to expand our understanding of the processes by which senescence functions. Recent rapid advances in genomics resources, especially for the model plant species Arabidopsis, are providing scientists with a dazzling array of tools for the identification and functional analysis of the genes and pathways involved in senescence. In this review, we present the current understanding of the mechanisms by which plants control senescence and the processes that are involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号