首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
晋西北黄土高原丘陵区不同土地利用方式下土壤碳氮储量   总被引:14,自引:1,他引:13  
对晋西北黄土高原丘陵区杨树-小叶锦鸡儿人工林、小叶锦鸡儿人工灌丛、杨树人工林、撂荒地和农田5种土地利用方式下土壤碳氮储量进行研究.结果表明: 不同土地利用方式下土壤碳氮含量、碳氮密度和碳氮储量存在显著差异.5种土地利用方式0~20 cm表层土壤碳氮含量和碳氮密度均显著大于20~40 cm和40~60 cm土层.5种土地利用方式同一土层碳氮含量和碳氮密度大小为: 杨树-小叶锦鸡儿人工林>小叶锦鸡儿人工灌丛>杨树人工林>撂荒地>农田;0~60 cm土层土壤有机碳储量大小为:杨树-小-叶锦鸡儿人工林(30.09 t·hm-2)>小叶锦鸡儿人工灌丛(24.78 t·hm-2)>杨树人工林(24.14 t·hm-2)>撂荒地(22.06 t·hm-2)>农田(17.59 t·hm-2);土壤氮储量与有机碳储量变化规律相似,杨树-小叶锦鸡儿人工林0~60 cm土层土壤氮储量(4.94 t·hm-2)最高,其次是小叶锦鸡儿人工灌丛(3.53 t·hm-2)、杨树人工林(3.51 t·hm-2)和撂荒地(3.40 t·hm-2),农田土壤氮储量(2.71 t·hm-2)最低.杨树-小叶锦鸡儿人工林和小叶锦鸡儿人工灌丛是晋西北黄土高原丘陵区植被建设和生态恢复过程中较好的两种土地利用方式.  相似文献   

2.
岷江干旱河谷区岷江柏人工林碳氮储量随林龄的动态   总被引:1,自引:0,他引:1  
研究了岷江干旱河谷区不同林龄岷江柏人工林生态系统碳氮储量及其分配特征.结果表明:岷江柏不同器官的碳含量相对稳定,氮含量则与器官类型密切相关,而土壤有机碳和氮含量均随着人工林林龄的增长而增加.岷江柏人工林植被层、土壤层以及生态系统的碳氮储量随着林龄的增长总体呈增加趋势.13、11、8、6和4年生岷江柏人工林生态系统总碳储量分别为190.90、165.91、144.57、119.44和113.49 t·hm-2,总氮储量分别为19.09、17.97、13.82、13.42和12.26 t·hm-2.岷江柏人工林生态系统碳氮大部分储存于0~60 cm土层,分别占生态系统总储量的92.8%和98.8%,且主要集中于0~20 cm土层,5个林龄平均碳氮储量分别为74.13和7.40 t·hm-2,分别占其平均土壤总碳氮储量(0~60 cm)的54.4%和48.9%.植被层有机碳和氮储量的分配不同,碳储量在乔木层(3.7%)的分配高于林下植被层(3.5%),而氮储量在乔木层(0.5%)的分配低于林下植被层(0.7%).不同林龄岷江柏人工林碳氮储量及其空间分布变化明显,且在此年龄段内,岷江柏人工林生态系统能够持续积累有机碳和氮.  相似文献   

3.
研究秦岭南坡东段8、25、35、42和61年生油松人工林碳、氮储量和分配格局.结果表明: 油松人工林不同林龄乔木层碳、氮含量为441.40~526.21和3.13~3.99 g·kg-1,灌木层为426.06~447.25和10.62~12.45 g·kg-1,草本层为301.37~401.52和10.35~13.33 g·kg-1,枯落物层为382.83~424.71和8.69~11.90 g·kg-1,土壤层(0~100 cm)为1.51~18.17和0.29~1.45 g·kg-1.树干和树枝分别是乔木层的主要碳库和氮库,占乔木层碳储量的48.5%~62.7%和氮储量的39.2%~48.4%.林龄对生态系统碳、氮储量均有显著影响.生态系统碳储量随林龄增加而增加,35年时达最大值146.06 t·hm-2,成熟后碳储量有所下降.5个林龄段油松林生态系统氮储量的最大值为25年时的10.99 t·hm-2.植被层平均碳、氮储量分别为45.33 t·hm-2和568.55 kg·hm-2,土壤层平均碳、氮储量分别为73.12和8.57 t·hm-2,且土壤层中碳、氮的积累具有明显的表层富集现象.研究区油松人工林生态系统碳、氮储量主要分布在土壤层,其次为乔木层.生态系统碳储量空间分配格局为:土壤层(64.1%)>乔木层(30.0%)>灌草层和枯落物层(5.9%),氮储量为土壤层(93.2%)>乔木层(5.3%)>灌草层和枯落物层(1.5%).  相似文献   

4.
阔叶和杉木人工林对土壤碳氮库的影响比较   总被引:2,自引:0,他引:2  
通过比较我国亚热带地区19年生阔叶人工林和杉木人工林土壤碳氮储量,探讨树种对土壤碳氮库的影响.结果表明:阔叶人工林0~40 cm土层碳储量平均为99.41 Mg·hm-2,比杉木人工林增加33.1%;土壤氮储量为6.18 Mg·hm-2,比杉木人工林增加22.6%.阔叶人工林林地枯枝落叶层现存量、碳和氮储量分别是杉木人工林的1.60、1.49和1.52倍,两个树种的枯落叶生物量、碳和氮储量均有显著差异.枯枝落叶层碳氮比值与土壤碳、氮储量之间呈显著负相关.阔叶人工林细根生物量(0~80 cm)是杉木林的1.28倍,其中0~10 cm土壤层细根生物量占48.2%;阔叶人工林细根碳、氮储量均高于杉木人工林.在0~10 cm土层,细根碳储量与土壤碳储量具有显著正相关关系.阔叶树种比杉木的土壤有机碳储存能力更大.  相似文献   

5.
次生演替是森林土壤有机碳、氮库变化的重要驱动因素.本研究以长白山原始阔叶红松林和杨桦次生林为例,通过成对样地途径,研究了森林土壤有机碳、氮的数量分布及其协同积累特征,探讨了次生演替导致的温带森林土壤碳库和碳汇效应变化及其碳氮耦合机制.结果表明: 杨桦次生林比原始阔叶红松林在土壤表层和亚表层(0~20 cm)积累了更多的有机碳和氮,其土壤C/N值也显著低于阔叶红松林;相对于阔叶红松林,杨桦次生林土壤(0~20 cm)有机碳储量平均增加了14.7 t·hm-2,相当于29.4 g·m-2·a-1的土壤碳汇增益.土壤有机碳和全氮在不同林型的不同土层中均表现为极显著正相关,二者具有明显的协同积累特征.与阔叶红松林生态系统相比,相对富氮的杨桦次生林生态系统的上部土层中氮对有机碳的决定系数明显高于阔叶红松林,说明杨桦次生林土壤有机碳的积累在更大程度上依赖含氮有机质积累.在有机质最丰富的表层(0~10 cm),两种林型间轻组有机碳、氮储量无显著差异,但杨桦次生林重组有机碳、氮的含量、储量及分配比例均显著高于阔叶红松林,其中,重组有机碳储量平均增加了8.5 t·hm-2,表明次生演替过程中土壤有机碳、氮库的增加主要在于矿物质结合态稳定性土壤有机碳、氮库的增容.凋落物分解和稳定性土壤有机质形成中的碳氮耦合机制是次生演替过程中土壤有机碳、氮库变化的重要驱动机制.  相似文献   

6.
丁一阳  毛子军  张玲  丁力 《植物研究》2015,35(4):604-611
土壤有机碳含量是全球生态系统碳储量变化的重要指标之一,本研究以空间替代时间序列的方法,分别选取了小兴安岭地区原始阔叶红松林和枫桦次生林并测定土壤有机碳库、土壤全氮含量、土壤微生物量碳及土壤相关理化性质,结果表明,土壤有机碳含量(SOC)、土壤全氮含量(TN)、土壤微生物量碳(MBC)、土壤含水率等指标随着土壤层的深度增加而逐渐减少最后趋于稳定,而土壤容重随着土壤层的加深而增大。在原始林中0~10和10~20cm层的SOC、TN含量差异不显著,而次生林则差异显著。原始阔叶红松林和枫桦次生林的土壤有机碳密度(SOCD)分别为21.46和21.3 kg·m-2,差异不显著。原始林和次生林的平均有机碳含量分别为35.79,28.6 g·kg-1,土壤全氮含量分别为2.86,1.83 g·kg-1,枫桦次生林MBC与SOC的线性相关性高于原始林。结果表明原始林土壤肥力高于次生林,在今后次生林的管理中应适当混栽针叶树种,原始林中应适当间伐使地下碳储量增加。  相似文献   

7.
小陇山不同林龄锐齿栎林土壤有机碳和全氮积累特征   总被引:3,自引:0,他引:3  
侯浩  张宋智  关晋宏  杜盛 《生态学报》2016,36(24):8025-8033
以甘肃小陇山林区3个林龄阶段(中龄林、近熟林和成熟林)的锐齿栎(Quercus aliena var.acuteserrata)天然次生林为对象,研究了土壤中有机碳和全氮的垂直分布及其积累特征。结果表明:林地土壤有机碳和全氮含量在各龄级土壤剖面中的垂直变化规律一致,表层土壤中含量最高,随着土层深度逐渐降低。1 m土层范围有机碳和全氮密度随着林龄的增加而增加,中龄林、近熟林和成熟林的碳密度分别为122.92、242.21t/hm~2和280.53 t/hm~2,龄组之间差异显著(P0.05);3个林龄阶段的土壤全氮密度分别为10.37、18.94t/hm~2和24.76 t/hm~2,差异显著(P0.05)。有机碳和全氮密度在0—20 cm土层中占有很高比重,达37%—56%。土壤有机碳与全氮含量呈极显著的线性正相关(P0.0001)。土壤有机碳和全氮积累速率随林龄阶段存在差异,在生长旺盛期(中龄林-近熟林)的土壤有机碳(10.84 t hm~(-2)a~(-1))和全氮(0.78 t hm~(-)2a~(-1))的积累速率要大于成熟期(近熟林-成熟林)的土壤有机碳(1.92 t hm~(-2)a~(-1))和全氮(0.29 t hm~(-2)a~(-1))积累速率。  相似文献   

8.
川西亚高山云杉人工林恢复过程中表层土壤碳动态变化   总被引:10,自引:0,他引:10  
姜发艳  孙辉  林波  刘庆 《应用生态学报》2009,20(11):2581-2587
对川西亚高山云杉原始林及其皆伐迹地上云杉人工林不同演替阶段(22、47和65年)表层(0~30 cm)土壤碳储量及活性有机碳含量进行了分析.结果表明:在0~10、10~20和20~30 cm土层中,土壤总有机碳(TOC)储量分别由22年生云杉人工林的9587、7908和71.55 t·hm-2减少到65年生云杉人工林的56.12、34.75和31.06 t·hm-2,且47和65年生云杉人工林各层土壤TOC储量小于原始林(88.08、71.16和64.81 t·hm-2);各层土壤易氧化有机碳(EOC)含量分别由原始林的3589、26.91和26.00 g·kg-1 减少到65年生云杉人工林的20.25、14.50和12.36 g·kg-1,土壤微生物生物量碳(MBC)含量由原始林的524.44、273.26和257.97 mg·kg-1减少到65年生云杉人工林的 312.41、186.95和152.18 mg·kg-1,颗粒态有机碳(POC)含量由原始林的40.23、27.10和19.55 g·kg-1减少到65年生云杉人工林的12.33、7.31和5.32 g·kg-1.川西亚高山云杉原始林在转变为人工林后相当长的时间内,土壤有机碳及活性碳一直处于净消耗状态.  相似文献   

9.
豫西黄土丘陵区不同林龄栎类和侧柏人工林碳、氮储量   总被引:2,自引:0,他引:2  
利用空间代替时间样地调查法,分析了豫西黄土丘陵区栎类和侧柏人工林生态系统碳、氮储量的分布格局,以及不同土层碳储量和氮储量随林龄的动态变化.结果表明:随着树龄的增加,两类人工林乔木层和枯落物层碳储量均增加,土壤碳储量和氮储量主要在表层(0~20 cm)汇聚,且各土层碳储量和氮储量随着林龄增加表现为减少-增加-减少的趋势.各林龄栎类人工林土壤表层碳、氮储量分别为20.31~50.07和1.68~2.12 t·hm-2;不同林龄侧柏人工林土壤表层碳、氮储量分别为23.99~48.76和1.59~2.34 t·hm-2;各林龄栎类和侧柏人工林生态系统的碳储量分别为52.04~275.82和62.18~279.81 t·hm-2;侧柏人工林碳汇能力略高于栎类人工林.土壤C/N随着造林年限的增加呈增加趋势.  相似文献   

10.
在生物量调查的基础上,对广西7、29和32 a格木人工林生态系统碳储量及其分配特征进行了研究.结果表明: 格木各器官碳含量在509.0~572.4 g·kg-1,大小顺序为:树干>树枝>树根>树皮>树叶;不同林龄间格木人工林的灌木层、草本层和凋落物层碳含量无显著差异;土壤层(0~100 cm)碳含量随土层深度的增加而降低,随林龄的增加而增大.7、29和32 a格木人工林乔木层碳储量分别为21.8、100.0和121.6 t·hm-2,各器官碳储量大小顺序与碳含量一致;生态系统碳储量分别为132.6、220.2和242.6 t·hm-2,乔木层和土壤层为主要碳库,占生态系统碳储量的97%以上.乔木层碳储量分配随着林龄的增加而增大,土壤碳储量分配则减小,而林龄对灌木层、草本层和凋落物层碳储量分配的影响无明显规律.  相似文献   

11.
基于广西喀斯特地区45块1000 m2样地的调查,研究幼龄林、中龄林、近熟林、成熟林、过熟林5个林龄阶段喀斯特森林植被与土壤碳储量的分配格局.结果表明: 广西不同林龄喀斯特森林总碳储量表现为幼龄林(86.03 t·hm-2)<近熟林(110.63 t·hm-2)<中龄林(112.11 t·hm-2)<成熟林(149.1 t·hm-2)<过熟林(244.38 t·hm-2);各林龄阶段植被不同层碳储量分配均不同,乔木层所占比例占绝对优势,达到92.3%~98.7%,随林龄的增加而增长,灌木层、草本层、凋落物层所占比例分别为0.3%~1.9%、0.3%~1.2%和0.3%~2.5%,细根所占比例为0.3%~3.3%.土壤有机碳密度随土层深度的增加而递减,土壤层碳储量为51.75~81.21 t·hm-2,所占生态系统比例为33.2%~66.2%,其随林龄的增大呈减小趋势.生态系统地上、地下部分碳储量分别为22.80~141.72和62.30~102.66 t·hm-2,除过熟林外均为地下部分>地上部分,地上碳储量随林龄的增大呈逐渐增加的趋势,地下碳储量的变化规律与土壤碳储量变化趋势一致.土壤层和乔木层为生态系统的主要碳库,二者所占比例达到了96%以上.  相似文献   

12.
长期施肥下红壤性水稻土有机碳储量变化特   总被引:1,自引:0,他引:1  
黄晶  张杨珠  高菊生  张文菊  刘淑军   《生态学杂志》2015,26(11):3373-3380
研究了1982—2012年长期不同施肥下红壤性水稻土土壤有机碳含量变化、固碳趋势及外源碳输入对土壤固碳的贡献.结果表明: 施肥能提高土壤有机碳含量,连续30年不同施肥后,各施肥处理土壤有机碳含量趋于稳定,有机无机配施的土壤有机碳含量为21.02~21.24 g·kg-1,增加速率为0.41~0.59 g·kg-1·a-1,单施化肥的土壤有机碳含量为15.48 g·kg-1.各有机无机肥配施处理土壤的平均有机碳储量为43.61~48.43 t C·hm-2,历年平均土壤有机碳储量显著大于单施化肥处理.土壤固碳速率与年均投入碳量呈显著指数正相关.本试验条件下,每年需要增加外源有机碳为0.12 t C·hm-2才能维持土壤有机碳的平衡.  相似文献   

13.
以河南省沙质潮土为研究对象,通过2012-2016年田间连续定位试验,在小麦-玉米轮作制度下,研究单施化肥(CK)、添加污泥堆肥(CS)15 t·hm-2(CS1)、30 t·hm-2(CS2)和45 t·hm-2(CS3)对土壤活性氮各组分及其分配比例的影响.结果表明: 连续施用污泥堆肥能够显著提高土壤含水率,降低土壤pH,提高土壤有机碳、全氮和速效养分含量,其中全氮(TN)含量显著增加了93.1%~284.3%;施用污泥堆肥45 t·hm-2显著提高了土壤轻组有机氮(LFON)、颗粒有机氮(PON)和微生物生物量氮(MBN).污泥堆肥促进了颗粒态有机氮(PON/TN)和微生物生物量氮(MBN/TN)分配,在CS2处理下分别显著提高了12.3%和539.9%,而降低了土壤轻组有机氮(LFON/TN)和溶解性有机氮(DON/TN)分配,分别降低了17.3%~40.1%和38.5%~71.3%.总体上,活性氮组分对TN的贡献为:PON>LFON>DON>MBN.主成分分析表明,CS2和CS3处理下活性氮含量及其分配比例载荷值较高;冗余分析表明,土壤理化指标(pH除外)和生物学指标与活性氮含量及其分配比例呈正相关.污泥堆肥可提供大量稳定性有机物质,影响土壤物理、化学和生物学特性,促进土壤氮素向活性氮的形式转化,当污泥堆肥施用量达30、45 t·hm-2时培肥效果显著,可用作沙质潮土的改良材料.  相似文献   

14.
以四川宜宾39年生马尾松人工林人工采伐形成的不同大小林窗为对象,研究林窗对土壤团聚体的组成、有机碳及活性有机碳含量和储量的影响.结果表明: 土壤团聚体组成以>2 mm团聚体为主,其含量占团聚体总量的51.7%~78.7%.>5 mm土壤团聚体有机碳和活性有机碳含量与土壤总有机碳和总活性有机碳含量相关性最高,且有机碳及活性有机碳含量和储量均较高,是该地区土壤有机碳固定的特征团聚体.马尾松林窗形成后,土壤总有机碳及各团聚体有机碳含量普遍降低,但1225 m2林窗有机碳储量略高于林下;总活性有机碳含量仅225和400 m2林窗较马尾松林下高,总活性有机碳储量225、400、900和1225 m2林窗较马尾松林下高,其余面积林窗低于林下.这表明合适的林窗面积可以增加土壤有机碳及活性有机碳积累.林窗大小显著影响到团聚体的组成、有机碳及活性有机碳含量和储量.其中,1225 m2林窗土壤有机碳含量和储量均最高,活性有机碳储量也较高,且团聚体组成较好,是比较适宜的林窗面积.  相似文献   

15.
采用时空互代法,以广西北部低山丘陵地区不同林龄(1、2、3、4、5和8 a)桉树人工林为研究对象,探讨林龄对桉树人工林地土壤碳库管理指数的影响及其规律。结果表明:(1)随着林龄的增加,土壤有机碳总体表现为增加的趋势,1~8 a桉树土壤有机碳范围在5.79~15.57 g· kg-1之间,随着土层的加深而降低; 0~40 cm土层土壤有机碳平均含量表现为8 a>5 a>3 a>4 a>2 a>1 a。(2)土壤非活性有机碳、碳储量随林龄和土层的变化规律与土壤有机碳基本一致。土壤活性有机碳含量大小依次表现为8 a>5 a>4 a>3 a>2 a>1 a,占土壤有机碳的比例随林龄变化无明显规律,8 a和其他林龄间均具有显著差异。(3)碳库管理指数随林龄增加整体呈上升趋势,8 a桉树人工林土壤碳组分含量及碳库管理指数均高于10 a对照马尾松林。碳库管理指数与土壤有机碳、非活性有机碳、活性有机碳、碳储量、碳库活度、全氮、容重呈极显著或显著的相关性,不同林龄和土层间碳库管理指数有差异性。适当延长桉树人工林的轮伐周期,减少人为对林地凋落物和林下植被的干扰,将有利于提高土壤的有机碳含量,进而改善土壤质量。  相似文献   

16.
豫东平原农区杨树-农作物复合生态系统的碳贮量   总被引:1,自引:0,他引:1  
将豫东平原农区5a、9a、11 a和13a 4个林龄阶段的杨树-农作物复合系统分为林木、农作物、凋落物和土壤4个子系统,分别研究其碳贮量.结果表明:5a、9a、11a和13a杨树-农作物复合生态系统林木及凋落物的碳贮量分别为7.86、42.07、44.31和60.71 t·hm-2;间作作物平均每年可吸收CO2 6.8 t·hm-2;农田土壤碳贮量分别为45.55、51.06、55.94和60.49 t·hm-2;杨树-农作物间作系统的总碳贮量分别达60.81、100.09、106.76和127.34 t·hm-2,远高于单作农田(49.36 t·hm-2).各年龄阶段杨树和土壤碳贮量占总碳贮量的比例最大,在87.1%~93.1%,而农作物和凋落物碳贮量比例较小,占总贮量的6.9%~12.9%.说明农林复合生态系统具有很强的吸收和固定碳的能力.  相似文献   

17.
毛乌素沙地沙漠化逆转过程土壤颗粒固碳效应   总被引:3,自引:0,他引:3  
为揭示毛乌素沙地沙漠化逆转过程中土壤颗粒的固碳效应,选择陕北榆林治沙区从流沙地、半固定沙地到林龄为20~55年生的灌木和20~50年生的乔木固沙林地,采用物理分组法分析了土壤砂粒、粉粒、黏粒结合碳的演变特征和累积速率.结果表明: 对比流沙地,土壤总有机碳及各颗粒碳含量在两种固沙林地均呈显著增加趋势,并以表层0~5 cm土壤碳含量增幅最高.从流沙地到55年生灌木和50年生乔木固沙林地,0~5 cm土层砂粒碳密度增速均为0.05 Mg·hm-2·a-1,粉粒碳密度增速分别为0.05和0.08 Mg·hm-2·a-1,而黏粒碳密度增速分别为0.02和0.03 Mg·hm-2·a-1.0~20 cm土层,两种林地各颗粒碳密度增速平均为0~5 cm土层的2.1倍.按此增速到50~55年生的固沙林地时,两种林地0~20 cm土层的砂粒碳、粉粒碳和黏粒碳密度分别比流沙地平均提高6.7、18.1、4.4倍,并且颗粒碳对总有机碳的累积贡献率平均为粉粒碳(39.7%)≈砂粒碳(34.6%)>黏粒碳(25.6%).综上,毛乌素沙地沙漠化逆转过程土壤颗粒均表现出显著的固碳效应,且以砂粒和粉粒为主要固碳组分.  相似文献   

18.
祁连山青海云杉林生物量和碳储量空间分布特征   总被引:7,自引:0,他引:7  
根据野外调查资料、祁连山地区青海云杉林相图和气象资料,在GIS技术的支持下估算了祁连山地区青海云杉林的生物量和碳储量及其空间分布.结果表明:2008年,研究区青海云杉林平均生物量为209.24 t·hm-2,总生物量为3.4×107 t;研究区水热条件的差异使青海云杉生物量在地理空间上存在较大的差异性;经度每增加1°,青海云杉生物量增加3.12t·hm-2;纬度每增加1°,生物量减少3.8 t·hm-2;海拔每升高100 m,生物量减少0.05 t·hm-2;2008年,研究区青海云杉林碳密度在70.4~131.1 t·hm-2,平均碳密度为109.8 t·hm-2,幼龄林、中龄林、近熟林、成熟林和过熟林的平均碳密度分别为83.8、109.6、122、124.2和117.1 t·hm-2,研究区青海云杉林总碳储量为1.8×107 t.  相似文献   

19.
内蒙古森林以其面积大、活立木总蓄积高成为全国森林的重要组成部分.本文以文献为基础,分析了近年来内蒙古森林及其组成部分的碳储量、碳密度、固碳速率和潜力.大部分研究以第六次森林清查数据为基础,利用材积与生物量之间的线性关系,得出内蒙古森林碳储量约为920 Tg C,占同期国家森林资源总碳储量的12%,年均增长率约为1.5%,平均碳密度约为43 t·hm-2.森林碳储量和碳密度呈逐年增加趋势,其中,针阔叶混交林、樟子松林和白桦林固碳能力最高.间伐和皆伐等人类活动使森林碳储量明显降低.已有的碳汇特征研究很少涉及土壤部分,仅有少数研究指出土壤碳密度随林龄的增加而增加.关于森林生态系统固碳潜力的研究不够深入.建议今后在计算内蒙古森林生态系统碳储量时,加入土壤碳储量部分;利用异速生长方程计算碳储量时,将树种器官碳含量设为45%;建立更多优势树种的、包含根系生物量的异速生长方程;加强气候变化与生态系统固碳速率和潜力关系的研究.  相似文献   

20.
黄土高原植被自然恢复和人工造林对土壤碳氮储量的影响   总被引:5,自引:0,他引:5  
土地利用方式变化能对土壤碳氮储量产生重要影响.为了探讨不同土地利用方式对土壤碳氮的影响,研究了黄土高原子午岭林区自退耕还林(草)工程实施以来(15年)自然恢复草地和人工油松林地0~100 cm土层土壤碳氮储量、碳氮比以及根系生物量的差异.结果表明:自然恢复草地和人工油松林地土壤有机碳均表现出表聚效应,自然恢复草地0~20 cm土层土壤有机碳储量显著低于人工油松林,而其他土层差异均不显著.人工油松林0~100 cm土层土壤总碳储量为117.94 Mg·hm-2,比自然恢复草地增加28.4%.两种植被类型土壤全氮储量在各土层间差异均不显著,但自然恢复草地0~100 cm土层土壤全氮总储量为7.69 Mg·hm-2,比人工油松林高17.7%.自然恢复草地和人工油松林土壤铵态氮储量在各土层间差异均显著,自然恢复草地铵态氮储量显著高于人工油松林,且随土层增加表现为先增后降的趋势.而自然恢复草地和人工油松林土壤硝态氮储量只在0~20 cm土层差异显著,且自然恢复草地高于人工油松林.自然恢复草地和人工油松林土壤碳氮比表现为0~20 cm土层差异不显著,随土层的加深表现为人工油松林碳氮比显著高于自然恢复草地,且差异逐渐增大.自然恢复草地和人工油松林土壤碳氮储量与根系生物量均呈显著正相关.因此,自然恢复草地土壤有利于氮储量的积累,人工油松林土壤有利于土壤碳储量的增加,且根系是影响土壤碳氮储量分布的重要因子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号