首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
于2012—2014年两个小麦生长季,以全生育期不灌水(W_0)为对照,设置3个测墒补灌处理,即拔节和开花期使0~140 cm土层土壤平均相对含水量分别为65%(W_1)、70%(W_2)和75%(W_3),研究其对土壤水利用、小麦氮素积累转运和土壤硝态氮分布及籽粒产量的影响.结果表明:W_2处理土壤贮水消耗量及占总耗水量的比例和灌溉水占总耗水量的比例较高,且吸收利用100~140 cm土层土壤贮水量较高.开花期营养器官氮素积累量及开花后氮素积累量均为W_2、W_3W_1W_0,成熟期营养器官氮素积累量为W_3W_2W_1W_0,营养器官氮素向籽粒中的转移量和成熟期籽粒氮素积累量均为W2W3W1W0.成熟期0~60cm土层硝态氮含量表现为W_0W_1W_2W_3,80~140 cm土层为W3显著高于其他处理,140~200 cm土层各处理间无显著差异.W_2处理的籽粒产量、水分利用效率、氮素吸收效率及氮肥偏生产力均最高.在本试验条件下,综合考虑籽粒产量、水分利用效率、氮素吸收效率及土壤硝态氮的淋溶,W_2处理是高产节水生态安全的最佳灌溉处理.  相似文献   

2.
长江流域稻麦轮作条件下冬小麦适宜施氮量   总被引:1,自引:0,他引:1  
为推动长江流域稻茬冬小麦氮肥的合理施用,研究了施氮量(0、120、210、300 kg·hm-2,分别表示为N0、N1、N2、N3)对土壤硝态氮含量、土壤-植株系统氮素平衡和产量的影响。结果表明: 土壤剖面的硝态氮含量随施氮量的增加而增加,至拔节期,不同施氮处理的硝态氮均显著运移至60 cm土层。拔节后追施氮肥显著提高了N1、N2处理0~40 cm土层和N3处理0~60 cm土层的硝态氮含量;而成熟期的硝态氮主要积累于0~40 cm土层。氮素平衡分析表明,氮素吸收、残留、损失因小麦不同生育阶段而异,越冬至拔节期是氮素表观损失的主要时期;小麦全生育期植株的氮素积累量、无机氮残留量和土壤氮素表观损失量均随施氮量的增加而显著增加。通过环境经济学的Coase原理和边际收益综合分析,稻茬小麦兼顾生产、生态和经济效益的适宜氮肥用量为250 kg·hm-2,基肥与拔节肥的比例为5∶5,相应获得的籽粒产量为6840 kg·hm-2。  相似文献   

3.
于2012—2014年两个冬小麦生长季,在大田条件下设置:全生育期不灌水(W0)处理,当地定量节水灌溉(拔节期和开花期均灌水60 mm,W1)处理,依据0~20 cm (W2)、0~40 cm (W3)、0~60 cm (W4)和0~140 cm (W5)土层土壤含水量测墒补灌处理,于拔节期和开花期补灌至土壤相对含水量为田间持水量的65%和70%,研究依据不同土层土壤含水量测墒补灌对冬小麦耗水特性、光合速率和籽粒产量的影响.结果表明:各处理拔节期灌水量为W1、W4>W3>W2、W5,开花期灌水量和总灌水量均为W5>W1、W4>W3>W2,W3总耗水量显著高于W2处理,与W1、W4和W5处理无显著差异.W3土壤贮水消耗量高于W1、W4和W5处理,其中,W3在拔节至开花阶段和开花至成熟阶段对40~140 cm和60~140 cm土层土壤贮水消耗量均显著高于其余灌水处理.灌浆中期W3处理小麦旗叶光合速率、蒸腾速率和水分利用效率最高,W1和W4处理次之,W0处理最低.W3处理两个生长季的籽粒产量分别为9077和9260 kg·hm-2,水分利用效率分别为20.7和20.9 kg·hm-2·mm-1,均显著高于其余处理,灌溉水生产效率最高.综合考虑灌水量、籽粒产量和水分利用效率,小麦拔节期和开花期适宜进行测墒补灌的土层深度为0~40 cm.  相似文献   

4.
不同施氮量下灌水量对小麦耗水特性和氮素分配的影响   总被引:6,自引:0,他引:6  
研究了不同施氮量条件下灌水量对高产小麦耗水特性和氮素分配利用的影响。设置4个施氮水平:0kg·hm-2(N0)、120kg·hm-2(N1)、210kg·hm-2(N2)和300kg·hm-2(N3),在每个施氮水平下设置4个灌水量处理:不浇水(W0)、底墒水+拔节水(W1)、底墒水+拔节水+开花水(W2)、底墒水+拔节水+开花水+灌浆水(W3),每次灌水量60mm。结果表明:(1)在N0水平下W0处理日耗水量以拔节至开花期最高,在N1水平下,拔节至开花期日耗水量与开花至成熟期的无显著差异。同一施氮水平下,小麦开花后总耗水量、耗水模系数和日耗水量随灌水量的增加而提高,但产量随灌水量的增加先升高后降低。(2)同一施氮水平下,成熟期W1处理20—140cm各土层土壤含水量低于W2和W3处理,140—200cm土层土壤含水量与W2处理无显著差异;W1处理0—40cm土层土壤硝态氮含量及植株氮素在籽粒中的分配比例高于W2和W3处理,100—140cm土层土壤硝态氮含量及植株氮素在营养器官中的分配量和分配比例低于W2和W3处理。表明灌溉底墒水和拔节水的W1处理,促进了小麦对20—140cm土层土壤水的吸收利用,减少了土壤硝态氮向100cm以下土层的淋溶,而且有利于营养器官中氮素向籽粒的再分配,水分和氮素利用效率较高。(3)在试验条件下,施纯氮210kg·hm-2、灌溉底墒水和拔节水的N2W1处理,籽粒产量最高,水分利用效率和氮素利用效率较高,可供生产中参考。  相似文献   

5.
不同施氮水平下灌水量对小麦水分利用特征和产量的影响   总被引:10,自引:3,他引:7  
在田间高产条件下,研究了不同施氮水平[180 kg·hm-2(N180)和240 kg·hm-2(N240)]下灌水量对小麦耗水特征和旗叶水分生理特性及产量的影响.结果表明:不灌水的W0处理100 cm以下土层的土壤贮水消耗量低于各灌水处理,W1(灌底墒水60 mm)和W2(灌底墒水和拔节水各60 mm)处理100~200 cm土层和0~200 cm土层土壤贮水消耗量高于W3(灌底墒水、拔节水和开花水各60 mm)处理;N240处理0~80 cm土层土壤贮水消耗量、开花至成熟阶段耗水模系数和农田耗水量高于N180. W2和W3处理灌浆中后期旗叶相对含水量和水势高于W0和W1处理;灌浆后期旗叶相对含水量和水势为N240W0和N240W1处理分别高于N180W0和N180W1处理,N240W2和N240W3处理与N180W2和N180W3处理之间无显著差异.施氮180 kg·hm-2,底墒水和拔节水分别灌60 mm的W2处理籽粒产量、水分和氮素利用效率高,农田耗水量较低;增加灌水量,籽粒产量无显著变化,农田耗水量增高,土壤贮水消耗量、水分利用效率、灌溉水利用效率和灌溉效益降低.  相似文献   

6.
灌溉量和施氮量对冬小麦产量和土壤硝态氮含量的影响   总被引:3,自引:1,他引:2  
Jiang DY  Yu ZW  Xu ZZ 《应用生态学报》2011,22(2):364-368
研究了大田条件下灌溉量和施氮量对小麦产量和土壤硝态氮含量的影响.结果表明:增加灌溉量,0~200 cm土层硝态氮含量呈先降后升又降的趋势.0~80 cm土层硝态氮含量显著低于对照,而80~200 cm土层硝态氮含量显著高于对照.随灌溉量的增加,土壤硝态氮向深层运移加剧,在成熟期,0~80 cm土层硝态氮含量降低,120~200 cm土层硝态氮含量升高,并在120~140 cm土层硝态氮含量出现高峰.灌溉量不变,施氮量由210 kg·hm-2增加到300 kg·hm-2,开花期、灌浆期、成熟期0~200 cm各土层土壤硝态氮含量显著升高.随灌溉量的增加,小麦籽粒产量先增加后降低,以全生育期灌溉量为60 mm的处理籽粒产量最高.增加施氮量,籽粒产量、蛋白质含量和蛋白质产量显著提高.本试验中,施氮量为210 kg.hm-2、两次灌溉总量为60 mm的处理籽粒产量、蛋白质含量、蛋白质产量和收获指数均较高,且土壤硝态氮损失少,是较合理的水氮运筹模式.  相似文献   

7.
过量施用氮肥造成的环境问题日益严重,氮肥合理使用已成为人们研究的热点.本文研究了西南玉米两种主要套作模式下氮肥运筹对玉米氮素利用和土壤硝态氮残留的影响.结果表明:连续分带轮作种植玉/豆模式后,玉米收获期植株中的氮素积累较玉/薯模式平均提高了6.1%,氮收获指数增加了5.4%,最终使氮肥利用效率提高4.3%,氮素同化量提高了15.1%,氮肥偏生产力提高了22.6%;玉米收获后硝态氮淋溶损失减少,60~120 cm土层中硝态氮残留玉/豆模式较玉/薯模式降低了10.3%,而0~60 cm土层中平均提高了12.9%,有利于培肥地力,两年产量平均较玉/薯模式高1249 kg·hm-2,增产22%;增加施氮量提高了植株氮素积累,降低了氮肥利用率,显著提高了表层土壤中硝态氮的累积,60~100 cm土层中硝态氮的累积量在0~270 kg·hm-2处理间差异不显著,继续增加施氮量会显著增加土壤硝态氮的淋溶;氮肥后移显著提高了土壤0~60 cm土层硝态氮的积累.两种模式下施氮量和底追比对玉米氮素吸收和硝态氮残留的影响结果不一致,玉/豆模式以施氮180~270 kg·hm-2、按底肥∶拔节肥∶穗肥=3∶2∶5的施肥方式有利于提高玉米植株后期氮素积累、氮收获指数和氮肥利用效率,减少了氮肥损失,两年最高产量平均可达7757 kg·hm-2;而玉/薯模式在180 kg·hm-2、按底肥∶穗肥=5∶5的施肥方式下,氮素积累利用及产量均优于其他处理,两年平均产量为6572 kg·hm-2,可实现两种模式下玉米高产、高效、安全的氮肥管理体系.
  相似文献   

8.
不同土层测墒补灌对冬小麦耗水特性及产量的影响   总被引:2,自引:0,他引:2  
于2010-2011年选用高产小麦品种济麦22进行大田试验,设置0~20 cm(W1)、0~40 cm(W2)、0~60 cm(W3)和0~140 cm(W4)4个测墒补灌土层,于越冬期(目标相对含水量均为75%)、拔节期(目标相对含水量均为70%)和开花期(目标相对含水量均为70%)进行测墒补灌,以全生育期不灌水处理(W0)为对照,研究不同土层测墒补灌对冬小麦耗水特性及产量的影响.结果表明: 小麦越冬期、拔节期和开花期补充灌水量为W3>W2>W1,W4处理小麦越冬期和拔节期补充灌水量较少,但开花期补灌量显著高于其他处理;全生育期补灌量占总耗水量的比例为W4、W3>W2>W1.土壤水消耗量占总耗水量的比例为W1>W2>W3>W4;随测墒补灌土层深度的增加,土壤水消耗量占总耗水量的比例减少;W2处理80~140 cm和160~200 cm土层土壤水消耗量显著高于W3和W4处理.各处理的总补灌量为W3>W4>W2>W1;籽粒产量为W2、W3、W4>W1>W0,W2、W3、W4间无显著差异;水分利用效率为W2、W4>W0、W1>W3,W2与W4之间无显著差异.综合考虑灌水量、籽粒产量和水分利用效率,W2处理是本试验条件下的最佳处理,即以0~40 cm土层测墒补灌效果最优.  相似文献   

9.
推迟拔节水对小麦氮素积累与分配和硝态氮运移的影响   总被引:2,自引:0,他引:2  
王红光  于振文  张永丽  王东  石玉 《生态学报》2012,32(6):1861-1870
摘要:2007—2008年度以高产冬小麦品种济麦22为材料,设置2个拔节水灌溉时期,为拔节期和拔节后10 d;3个目标相对含水量,灌水后0~140 cm土层土壤相对含水量分别达到65%、75%、80%,以W1、W2、W3表示拔节期灌水处理,DW1、DW2、DW3表示拔节后10 d灌水处理;开花期均灌水至0~140 cm土层土壤相对含水量为70%,研究推迟拔节水对小麦氮素积累与分配和硝态氮运移的影响。结果表明:(1)W2和DW2处理有利于提高0~60 cm土层土壤硝态氮含量,促进籽粒氮素积累;营养器官贮藏氮素向籽粒的转运量、籽粒产量和氮肥偏生产力分别高于W1和DW1,与W3和DW3处理无显著差异;开花后植株氮素积累量、籽粒蛋白质含量和水分利用效率分别高于W3和DW3,是拔节期和拔节后10 d灌水的最优处理。(2)W2和DW2处理比较,DW2成熟期100~140 cm土层硝态氮残留量低于W2,籽粒产量、籽粒蛋白质含量、氮素吸收效率、氮肥偏生产力和水分利用效率均显著高于W2,是本试验条件下的最佳灌水方案。2008—2009生长季试验各处理变化趋势同2007—2008年度。  相似文献   

10.
为确定渭北旱地春玉米减肥增效的科学生产模式,于2016—2019年在陕西合阳县实施旱地春玉米田间定位施肥试验。以郑单958和陕单8806为试验品种,设置5个施氮量处理,分别为360(N360,当地农户常规施氮量)、270(N270)、150~180(N150-180)、75~90(N75-90)和0 kg·hm-2 (N0),分析减量施氮处理下春玉米产量、氮素吸收利用及硝态氮残留状况。结果表明: 1)与N360处理相比,两个品种在N150-180处理下籽粒产量增加0.9%~7.1%,吸氮量降低4.1%~4.6%,平均氮肥回收利用率、偏生产力和农学效率分别提高79.3%~83.6%、105.9%~157.7%和101.9%~114.1%;2)在高施氮量(大于180 kg·hm-2)处理下,硝态氮残留量显著增加;降雨不足显著降低玉米需氮量,导致氮素残留量增加。经过4年定位试验0~200 cm土层硝态氮含量高达504.7~620.8 kg·hm-2,在80~140 cm土层出现累积峰,存在硝态氮淋失风险。根据年际间玉米籽粒产量表现、肥料利用效率和硝态氮残留状况综合评价,渭北旱地春玉米田适宜氮肥用量为150~180 kg N·hm-2。  相似文献   

11.
研究了高产栽培条件下,不同施氮量和底施追施比例对土壤硝态氮和铵态氮含量时空变化的影响,同时计算了不同生育阶段土壤氮素的表观盈亏量.结果表明,与氮肥分期施用处理比较,氮肥全部用于拔节期追施处理降低了拔节期之前的土壤硝态氮含量,减少了拔节期之前土壤氮素的表观盈余量,降低了氮素向深层的淋洗;而挑旗期土壤硝态氮含量与氮肥分期施用处理无显著差异,但提高了土壤铵态氮含量;增加了成熟期0~60 cm土壤各土层土壤硝态氮含量和0~20 cm土壤铵态氮含量.氮肥全部用于拔节期追施的两处理间比较,在240 kg·hm-2的基础上降低施氮量至168 kg·hm-2,降低了挑旗期土壤硝态氮和铵态氮的含量,减少了挑旗期到成熟期土壤氮素的亏缺量,也使成熟期土壤硝态氮的含量降低.不同处理间籽粒产量和蛋白质产量无显著差异,施氮量为168 kg·hm-2且全部用于拔节期追施的处理籽粒蛋白质含量最高.  相似文献   

12.
测墒补灌对冬小麦氮素积累与转运及籽粒产量的影响   总被引:6,自引:0,他引:6  
2007-2009年,在田间条件下,以冬小麦品种济麦22为材料,以0-140 cm土层平均土壤相对含水量为指标设计4个测墒补灌试验处理:W0(土壤相对含水量为播种期80%+拔节期65%+开花期65%)、W1(土壤相对含水量为播种期80%+拔节期70%+开花期70%)、W2(土壤相对含水量为播种期80%+拔节期80%+开花期80%)和W3(土壤相对含水量为播种期90%+拔节期80%+开花期80%),研究不同水分处理对冬小麦氮素积累与转运、籽粒产量、水分利用效率及土壤硝态氮含量的影响。结果表明:(1)成熟期小麦植株氮素积累量为W1处理最高,W3处理次之,W0和W2处理最低,W0和W2处理间无显著差异;氮素向籽粒的分配比例为W2处理显著低于W1处理,W0、W1、W3处理间无显著差异。开花期和成熟期营养器官氮素积累量、营养器官氮素向籽粒中的转移量、成熟期籽粒氮素积累量均为W1>W3>W2>W0,各处理间差异显著。(2)随着小麦生育进程的推进,0-200 cm土层土壤硝态氮含量先降低后回升再降低,在拔节期最低。成熟期W0和W1处理0-200 cm土层土壤硝态氮含量较低,W2和W3处理120-200 cm土层土壤硝态氮含量较高。(3)W0处理小麦氮素吸收效率、利用效率和氮肥偏生产力最低;随灌水量的增加,氮素利用效率呈先升高后降低趋势;W1处理小麦对氮素的吸收效率和利用效率较高,氮肥偏生产力最高。W0处理水分利用效率较高,但籽粒产量最低;灌水处理籽粒产量、灌溉水利用效率和灌溉效益两年度均随测墒补灌量的增加而显著降低。在本试验条件下,综合氮素利用、籽粒产量、灌溉水利用效率及土壤中硝态氮的淋溶,W1是高产节水的最佳灌溉处理,在2007-2008年和2008-2009年度补灌量分别为43.83 mm和13.77 mm。  相似文献   

13.
研究限水减氮对冬小麦产量、氮素利用率和氮素表观平衡的影响,探讨限水减氮管理模式在关中平原冬小麦生产中的可行性,可为实现关中平原灌区冬小麦生产的稳产高效和环境友好发展提供科学依据。本研究于2017—2018和2018—2019年连续2年在陕西杨凌地区进行小麦田间裂区试验,灌水量为主处理,设置两个灌溉水平,1200 m3·hm-2(常规灌溉,在越冬期和拔节期灌溉, W2)和600 m3·hm-2(限水灌溉,仅在越冬期灌溉, W1);施氮量为副处理,设置4个施氮水平,300 kg·hm-2(关中地区常规施氮量,N300)、225 kg·hm-2(减量施氮25%,N225)、150 kg·hm-2(减量施氮50%,N150)和0 kg·hm-2(不施氮,N0),分析冬小麦产量、氮素利用效率、收获后土壤硝态氮积累量和氮素表观平衡。结果表明: 限水减氮能显著增加冬小麦植株和籽粒氮素含量,提升产量和氮素携出量,提高氮素利用效率、氮素收获指数、氮肥表观利用率和氮肥农学效率,减少硝态氮的淋失,降低氮素盈余量,维持氮素平衡。2017—2019年在W1N150处理基础上增加了灌溉量和施氮量,冬小麦产量和氮素携出量不会显著增加。2017—2018年和2018—2019年,与W2N300相比,W1N150同时期植株氮素含量分别提高0.1%~25.5%和14.0%~31.6%,籽粒氮素含量分别提高0.1%和4.6%。氮素利用效率、氮素收获指数、氮肥表观利用率和氮肥农学效率平均提高95.3%、4.2%、81.7%和33.0%,氮素盈余量分别减少97.2%和95.1%,有效减少了土壤硝态氮的淋失。综合各项指标,越冬期灌溉600 m3·hm-2配合施氮量150 kg·hm-2的限水减氮组合能够保证关中平原冬小麦高产、高效和环境友好发展。  相似文献   

14.
杨荣  苏永中 《生态学报》2009,29(3):1459-1469
在黑河中游边缘绿洲沙地农田研究了不同的水氮配合对玉米产量、土壤硝态氮在剖面中的累积和氮平衡的影响.结果表明,施氮处理较不施氮处理产量增加48.22%~108.6%,施氮量超过225 kg hm-2,玉米产量不再显著增加.受土壤结构影响土壤硝态氮在土壤中呈"W"型分布,即土壤硝态氮含量在0~20 cm、140~160 cm和260~300 cm土层均出现峰值,并随施氮量增加,峰值增高.在常规高灌溉量处理硝态氮含量峰值最高值出现在260~300 cm土层,节水25%灌溉处理硝态氮含量峰值最高值出现在土壤表层0~20 cm土层.在常规高灌溉量处理0~300 cm土层中200~300土层硝态氮累积量所占比例最高,介于27.56%~51.86%之间;节水25%灌溉处理在0~300 cm土层中100~200土层硝态氮累积量所占比例最高,介于32.94%~38.07%之间;表明低灌溉处理下土壤硝态氮在土壤浅层累积较多,而高灌溉处理使更多的硝态氮淋溶至土壤深层.与2006年相比,2007年不施氮处理0~200 cm土层土壤硝态氮含量和积累量均明显减少;而施氮处理变化很小,在低灌溉处理甚至表现出硝态氮含量和积累量增加,表明施氮是土壤硝态氮累积的主要来源,而灌溉则使硝态氮向土壤深层淋溶.0~200 cm 土层土壤硝态氮累积量平均介于27.66~116.68 kg hm-2、氮素表观损失量平均介于77.35~260.96 kg hm-2,和施氮量均呈线性相关,即随施氮量增加,土壤硝态氮累积量和氮素表观损失量均增加,相关系数R2介于0.79~0.99之间,相关均显著.随施氮量增加,玉米总吸氮量和氮收获指数增加,氮的农学利用率降低,而灌溉的影响较小.施氮量超过225 kg hm-2时,地上部植株氮肥吸收利用率和籽粒氮肥吸收利用率开始有降低趋势.所以,在沙地农田,节水10%~25%的灌溉水平和225 kg hm-2的施氮水平可以在避免水肥过量投入的基础上减少土壤有机氮淋溶对地下水造成的污染威胁.  相似文献   

15.
于2013—2014和2014—2015年两个小麦生长季进行田间试验,供试品种为‘济麦22’,设置5个处理,分别为W0(全生育期不灌水)、W1(越冬期不灌水,拔节期和开花期分别补灌至0~40 cm土层土壤相对含水量为65%和70%)、W2(越冬期、拔节期和开花期分别补灌至土壤相对含水量为70%、65%和70%)、W3(越冬期、拔节期和开花期分别补灌至土壤相对含水量为75%、65%和70%)和W4(越冬期、拔节期和开花期均定量灌溉60 mm),研究越冬期测墒补灌对小麦耗水特性和光合有效辐射截获利用的影响.结果表明: 总灌水量及其占总耗水量的比例为W4>W3>W2>W1>W0;土壤贮水消耗量占总耗水量的比例为W0>W1、W2>W3、W4;总耗水量和开花至成熟期的耗水量均为W4>W2、W3>W1>W0.两生长季小麦开花后冠层光合有效辐射(PAR)截获率为W4>W2、W3>W1>W0,而花后冠层PAR反射率各处理间的表现与之相反.灌水处理中干物质净积累量为W4处理最高,W1处理最低.两生长季小麦越冬期0~40 cm土层土壤相对含水量补灌至70%的W2处理籽粒产量仅低于定量灌溉的W4处理,水分利用效率和灌溉效益最高,是本试验条件下节水高产的最优处理.  相似文献   

16.
施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响   总被引:13,自引:1,他引:12  
研究了不同施氮水平对高产麦田土壤硝态氮时空变化和氨挥发的影响.结果表明,高产麦田土壤硝态氮在播种至冬前阶段不断向深层移动,并在140cm以下土层积累.施纯氮96~168 kg·hm-2处理,增加了60 cm以上土层土壤硝态氮含量,降低了土壤氮素表观损失量占施氮量的比例,提高了小麦籽粒蛋白质含量和籽粒产量,且土壤氨挥发损失较低,基施氮氨挥发损失占基施氮量的4.23%~5.51%;施氮量超过240 kg N·hm-2,促进了土壤硝态氮向深层的移动和积累,基施氮氨挥发损失、土壤氮素表观损失量及其占施氮量的比例均显著升高,对小麦籽粒蛋白质含量无显著影响,但籽粒产量降低.高产麦田适宜的氮素用量为132~204 kg N·hm-2.  相似文献   

17.
本研究以‘郑麦366'(强筋)和‘百农207'(中筋)两个小麦品种为试验材料,分别在全生育期不灌水(W1)和拔节+抽穗灌两水(W2)条件下,研究了氯化铵(NT1)、硝酸钙(NT2)、尿素(NT3)和硝酸铵钙(NT4)4种氮源类型对小麦土壤供氮能力、产量和氮素利用效率的影响,以期为小麦高产高效生产提供理论和技术支撑。结果表明: 1)随着土层深度的增加,开花期土壤中铵态氮和硝态氮含量呈下降趋势。在W2条件下,0~60 cm土层铵态氮、硝态氮含量,根际土壤脲酶、蔗糖酶和过氧化氢酶活性均低于相应W1条件下,其中强筋小麦郑麦366平均分别下降10.0%、13.3%、7.5%、2.8%和3.9%。2)两个小麦品种0~60 cm土层铵态氮含量均表现为在NT1和NT3处理下显著高于其他处理;而硝态氮含量则在NT2和NT3处理下显著高于其他处理。与NT1和NT2处理相比,NT3和NT4提高了灌浆中、后期土壤脲酶和蔗糖酶活性。3)两个小麦品种在NT3和NT4处理下籽粒产量和氮素利用效率较高;其中在W2条件下,郑麦366在NT3和NT4处理下的产量较NT1处理分别增加14.9%和20.7%,NUE分别增加25.6%和13.9%。4)相关分析结果表明, 0~20 cm土壤硝态氮含量、20~40 cm土壤铵态氮含量分别与小麦产量、氮素利用效率呈显著正相关。两种水分条件下,施用尿素和硝酸铵钙均提高了灌浆中、后期根际土壤酶活性,有利于籽粒产量和氮素利用效率的提高。  相似文献   

18.
吕宁  尹飞虎  陈云  高志建  刘瑜  石磊 《生态学杂志》2015,26(11):3337-3344
试验设置半开顶式CO2人工气候室,研究了不同CO2浓度处理(360、540 μmol·mol-1)与施氮(N)量(0、150、300 和450 kg·hm-2)对棉花干物质的积累与分配、氮素吸收量及土壤脲酶活性的影响.多样性指数和主成分分析表明: 各施N水平下,CO2浓度增加下棉花蕾、茎、叶和整株的总干物质积累量显著增加;2个CO2浓度下,300 kg·hm-2-N (N300)处理棉花蕾、茎、叶、根及整株干物质量显著高于其他3个N肥处理,合理的氮肥施用可显著提高棉花干物质积累量.棉花蕾和茎的氮素吸收量受CO2浓度影响显著,与360 μmol·mol-1CO2浓度相比,CO2浓度为540 μmol·mol-1条件下蕾和茎的氮含量显著增加,其中N300处理下蕾的氮含量最高,N150和N300处理茎的氮含量高于N0和N450处理;叶的氮素吸收量受CO2和N的交互作用影响显著,在N0、N150、N300处理下,540 μmol·mol-1CO2浓度下叶的氮含量增加;棉花根的氮素吸收量受施N的影响显著,540 μmol·mol-1CO2浓度下根的氮含量随着施N量的增加显著增加.总体上,540 μmol·mol-1CO2浓度下棉花的氮素吸收量高于360 μmol·mol-1 CO2浓度,各CO2和N组合处理下,棉花各器官的氮素积累量蕾铃最高,叶片居中,其次是茎秆,根系最低.各施N水平下,两个土层的土壤脲酶活性随着CO2浓度升高而显著增加;不同CO2浓度处理下,0~20 cm土层土壤脲酶活性随着施N量的增加而增加,20~40 cm土层N300处理下的土壤脲酶活性高于其他N肥处理;CO2和N互作下,0~20 cm土层土壤脲酶活性的平均值显著高于20~40 cm土层.大气CO2浓度为540 μmol·mol-1、氮肥施用量为300 kg·hm-2可显著提高棉花干物质积累量和氮素吸收量.  相似文献   

19.
秸秆还田下施氮量对稻茬晚播小麦土壤氮素盈亏的影响   总被引:1,自引:1,他引:0  
在大田条件下,研究了不同施氮量对秸秆还田下晚播小麦土壤矿质氮含量变化、秸秆氮释放及小麦产量的影响.结果表明: 0~50 cm土层土壤矿质氮含量随着施氮量的增加而显著增加,随生育进程的推进,N270和N360处理下层土壤的矿质氮显著积累.秸秆氮素释放量随施氮量增加而增加,越冬至拔节期氮释放量最低,拔节至成熟期释放量占总释氮量的50%以上.全生育期施氮量超过180 kg·hm-2,土壤氮素开始出现显著的盈余,播种至拔节期氮素表观盈余量显著高于拔节至成熟期.籽粒产量在270 kg·hm-2施氮量下最高, 更高施氮量下氮素利用效率显著降低.施氮量为270 kg·hm-2时,有利于秸秆全量还田下晚播小麦兼顾产量和生态效益.  相似文献   

20.
水氮互作对固定道垄作栽培春小麦根系生长及产量的影响   总被引:1,自引:0,他引:1  
为探讨固定道小麦栽培方式下适宜的水氮组合,以低水1200 (W1)、中水2400 (W2)、高水3600 m3·hm-2 (W3)为主处理,0 (N0)、低氮90(N1)、中氮180 (N2)、高氮270 kg·hm-2 (N3)为副处理,采用裂区设计,对固定道垄作栽培方式下水氮互作对春小麦根系生长及产量的影响进行了研究.结果表明:水氮互作能显著影响春小麦根干质量密度(RWD),RWD随着小麦生育期的进程表现为先增大后减小的趋势,在灌浆期达最大;RWD对施氮量的响应取决于灌溉量,在W1下,RWD在N1处理下最大,在W2下,RWD随着施氮量的增加在N2处理下最大,在W3下,RWD随着施氮量的增加在N3 处理下最大;不同灌溉处理下RWD表现为W2>W3>W1;施氮与灌水显著影响RWD,表现为灌水>氮肥>水氮互作,在W2N2处理下最大.根冠比随着灌水量与施氮量的增加逐渐减小,在W1N0处理下根冠比最大;85%以上的小麦根系分布于0~40 cm土层,产量与0~40 cm土层RWD呈显著抛物线回归关系,与40~60 cm土层RWD呈显著线性正回归关系.W2灌溉条件可以促进小麦根系向中下层(40~60 cm)分布;灌水施氮能显著影响春小麦籽粒产量与生物产量,生物产量随着施氮量和灌水量的增加而增加,籽粒产量在W2N2最大;灌水生产力随灌水量的增加逐渐降低,氮肥农学利用率随施氮量的增加而减小.因此,在固定道垄作栽培方式下,施肥量与灌水量控制在N2 (180 kg·hm-2)与W2(2400 m3·hm-2)条件下有利于促进根系生长,进而提高春小麦籽粒产量及水氮利用效率,是河西灌区固定道小麦栽培方式下适宜的水氮组合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号