首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Summary Triple-resonance experiments can be designed to provide useful information on spin-system topologies. In this paper we demonstrate optimized proton and carbon versions of PFG-CT-HACANH and PFG-CT-HACA(CO)NH straight-through triple-resonance experiments that allow rapid and almost complete assignments of backbone H, 13C, 15N and HN resonances in small proteins. This work provides a practical guide to using these experiments for determining resonance assignments in proteins, and for identifying both intraresidue and sequential connections involving glycine residues. Two types of delay tunings within these pulse sequences provide phase discrimination of backbone Gly C and H resonances: (i) C–H phase discrimination by tuning of the refocusing period a_f; (ii) C–C phase discrimination by tuning of the 13C constant-time evolution period 2Tc. For small proteins, C–C phase tuning provides better S/N ratios in PFG-CT-HACANH experiments while C–H phase tuning provides better S/N ratios in PFG-CT-HACA(CO)NH. These same principles can also be applied to triple-resonance experiments utilizing 13C-13C COSY and TOCSY transfer from peripheral side-chain atoms with detection of backbone amide protons for classification of side-chain spin-system topologies. Such data are valuable in algorithms for automated analysis of resonance assignments in proteins.  相似文献   

2.
Summary A simple 2D difference experiment is described that allows quantitative measurement of 13C–13C J couplings between backbone carbonyl and side-chain carbons. Precise 3JCC values were measured from data recorded in just 2 h for a 1-mM solution of the 20-kD complex between the protein calmodulin and a 26-residue synthetic peptide. The J couplings aid in determining the 1 angles of valine, isoleucine and threonine residues, and in making stereospecific assignments of the Val C methyl groups. Error analysis indicates that the uncertainty in the derived J couplings is generally less than ca. 0.3 Hz.  相似文献   

3.
Summary The perdeuteration of aliphatic sites in large proteins has been shown to greatly facilitate the process of sequential backbone and side-chain 13C assignments and has also been utilized in obtaining long-range NOE distance restraints for structure calculations. To obtain the maximum information from a 4D 15N/15N-separated NOESY, as many main-chain and side-chain 1HN/15N resonances as possible must be assigned. Traditionally, only backbone amide 1HN/15N resonances are assigned by correlation experiments, whereas slowly exchanging side-chain amide, amino, and guanidino protons are assigned by NOEs to side-chain aliphatic protons. In a perdeuterated protein, however, there is a minimal number of such protons. We have therefore developed several gradient-enhanced and sensitivity-enhanced pulse sequences, containing water-flipback pulses, to provide through-bond correlations of the aliphatic side-chain 1HN/15N resonances to side-chain 13C resonances with high sensitivity: NH2-filtered 2D 1H-15N HSQC (H2N-HSQC), 3D H2N(CO)C/ and 3D H2N(COC/)C/ for glutamine and asparagine side-chain amide groups; 2D refocused H(N/)C/ and H(N/C/)C/ for arginine side-chain amino groups and non-refocused versions for lysine side-chain amino groups; and 2D refocused H(N)C and nonrefocused H(N.)C for arginine side-chain guanidino groups. These pulse sequences have been applied to perdeuterated 13C-/15N-labeled human carbonic anhydrase II (2H-HCA II). Because more than 95% of all side-chain 13C resonances in 2H-HCA II have already been assigned with the C(CC)(CO)NH experiment, the assignment of the side-chain 1HN/15N resonances has been straightforward using the pulse sequences mentioned above. The importance of assigning these side-chain HN protons has been demonstrated by recent studies in which the calculation of protein global folds was simulated using only 1HN-1HN NOE restraints. In these studies, the inclusion of NOE restraints to side-chain HN protons significantly improved the quality of the global fold that could be determined for a perdeuterated protein [R.A. Venters et al. (1995) J. Am. Chem. Soc., 117, 9592–9593].To whom correspondence should be addressed.  相似文献   

4.
Summary The assignments of the 1H, 15N, 13CO and 13C resonances of recombinant human basic fibroblast growth factor (FGF-2), a protein comprising 154 residues and with a molecular mass of 17.2 kDa, is presented based on a series of three-dimensional triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N-/13C-labeled FGF-2 with an isotope incorporation >95% for the protein expressed in E. coli. The sequence-specific backbone assignments were based primarily on the interresidue correlation of C, C and H to the backbone amide 1H and 15N of the next residue in the CBCA(CO)NH and HBHA(CO)NH experiments and the intraresidue correlation of C, C and H to the backbone amide 1H and 15N in the CBCANH and HNHA experiments. In addition, C and C chemical shift assignments were used to determine amino acid types. Sequential assignments were verified from carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the HNCA experiment. Aliphatic side-chain spin systems were assigned primarily from H(CCO)NH and C(CO)NH experiments that correlate all the aliphatic 1H and 13C resonances of a given residue with the amide resonance of the next residue. Additional side-chain assignments were made from HCCH-COSY and HCCH-TOCSY experiments. The secondary structure of FGF-2 is based on NOE data involving the NH, H and H protons as well as 3JH n H coupling constants, amide exchange and 13C and 13C secondary chemical shifts. It is shown that FGF-2 consists of 11 well-defined antiparallel -sheets (residues 30–34, 39–44, 48–53, 62–67, 71–76, 81–85, 91–94, 103–108, 113–118, 123–125 and 148–152) and a helix-like structure (residues 131–136), which are connected primarily by tight turns. This structure differs from the refined X-ray crystal structures of FGF-2, where residues 131–136 were defined as -strand XI. The discovery of the helix-like region in the primary heparin-binding site (residues 128–138) instead of the -strand conformation described in the X-ray structures may have important implications in understanding the nature of heparin-FGF-2 interactions. In addition, two distinct conformations exist in solution for the N-terminal residues 9–28. This is consistent with the X-ray structures of FGF-2, where the first 17–19 residues were ill defined.  相似文献   

5.
Summary A method for measuring three-bond 13C-1H scalar coupling constants across glycosidic bonds in a cyclic (12)-glucan icosamer is presented. This oligosaccharide molecule, with its high degree of symmetry, represents a particular challenge for NMR spectroscopy to distinguish inter-residue from intra-residue heteronuclear coupling effects. Chemically equivalent H2 protons in adjacent glucosyl residues are distinguished on the basis of their different through-space, dipolar interactions with the anomeric protons (H1). The strong NOE contact between anomeric (H1) and aglyconic (H2) protons permits the selective observation of the inter-residue heteronuclear couplings 3JC1H2 and 3JC2H1 in a natural-abundance 13C-1-half-filtered {1H,1H} ROESY experiment.Abbreviations COSY scalar correlated spectroscopy - NOE nuclear Overhauser effect - NOESY NOE spectroscopy - ROESY rotating-frame NOE spectroscopy  相似文献   

6.
A 4D TROSY-based triple resonance experiment, 4D-HNCOi–1CAi, is presented which correlates intra-residue 1HN, 15N, 13 C chemical shifts with the carbonyl (13C) shift of the preceding residue. The experiment is best used in concert with recently described 4D TROSY-HNCOCA and -HNCACO experiments [Yang, D. and Kay, L.E. (1999) J. Am. Chem. Soc., 121, 2571–2575]. In cases where degeneracy of (1HN,15N) spin pairs precludes assignment using the HNCOCA and HNCACO, the HNCOi–1CAi often allows resolution of the ambiguity by linking the 13C and 13C spins surrounding the (1HN,15N) pair. The experiment is demonstrated on a sample of 15N, 13C, 2 H labeled maltose binding protein in complex with -cyclodextrin that tumbles with a correlation time of 46 ns.  相似文献   

7.
Summary The peptide hormone motilin was synthesised with a 13C-enriched -carbon in the leucine at position 10. In aqueous solution, six different relaxation rates were measured for the 13C–H fragment as a function of temperature and with and without the addition of 30% (v/v) of the cosolvent d 2-1,1,1,3,3,3-hexafluoro-2-propanol (HFP). The relaxation rates were analysed employing the spectral density mapping technique introduced by Peng and Wagner [(1992) J. Magn. Reson., 98, 308–322] and using the model-free approach by Lipari and Szabo [(1982) J. Am. Chem. Soc., 104, 4546–4570]. The fit to various models of dynamics was also considered. Different procedures to evaluate the overall rotational correlation time were compared. A single exponential time correlation function was found to give a good fit to the measured spectral densities only for motilin in 30% (v/v) HFP at low temperatures, whereas at high temperatures in this solvent, and in D2O at all temperatures, none of the considered models gave an acceptable fit. A new empirical spectral density function was tested and found to accurately fit the experimental spectral density mapping points. The application of spectral density mapping based on NMR relaxation data for specific 13C–1H vector is shown to be a highly useful method to study biomolecular dynamics. Advantages are high sensitivity, high precision and uniform sampling of the spectral density function over the frequency range.Abbreviations CD circular dichroism - NOE nuclear Overhauser enhancement - NOESY two-dimensional NOE spectroscopy - INEPT insensitive nuclei enhanced by polarisation transfer - DANTE delays alternating with nutations for tailored excitation - WALTZ-16 wideband, alternating phase, low-power technique for zero residual splitting - FID Free induction decay - ppm parts per million - TSPA 3-trimethylsilyl-(3,3,2,2-d)-propionic acid - HFP d 2-1,1,1,3,3,3-hexafluoro-2-propanol - CPMG Carr-Purcell-Meiboom-Gill - TFD time-resolved fluorescence depolarisation - CSA chemical shift anisotropy Partly presented at the symposium Dynamics and Function of Biomolecules, Szeged, Hungary, July 31–August 2, 1993.  相似文献   

8.
Summary A new 1H-detected 3D NMR experiment is described that permits quantitative measurement of two- and three-bond 13C–1H couplings in proteins with selectively 13C-enriched methyl sites. The method is demonstrated for staphylococcal nuclease selectively [5,5 13C]-labeled in all 11 leucine positions and ligated with thymidine 3,5-biphosphate and Ca2+. Two- and three-bond 13C methyl-proton couplings are reported and, together with the measured three-bond JCC in uniformly 13C-enriched staphylococcal nuclease, the 2- and the stereospecific assignments of the C methyl group with respect to the prochiral -protons were determined. The same residues that were previously found to have high degrees of internal mobility on the basis of 13C relaxation times have measured coupling constants that are indicative of motional averaging.  相似文献   

9.
We recently introduced a new line of reduced-dimensionality experiments making constructive use of axial peak magnetization, which has so far been suppressed as an undesirable artifact in multidimensional NMR spectra [Szyperski, T., Braun, D., Banecki, B. and Wüthrich, K. (1996) J. Am. Chem. Soc., 118, 8146–8147]. The peaks arising from the axial magnetization are located at the center of the doublets resulting from projection. Here we describe the use of such projected four-dimensional (4D) triple resonance experiments for the efficient sequential resonance assignment of 15N/13C-labeled proteins. A 3D / /(CO)NHN experiment is recorded either in conjunction with 3D HNN< > or with the newly presented 3D HNN scheme. The first combination yields sequential assignments based on the measurement of13 C chemical shifts and provides a complete 1H, 13C and 15N resonance assignment of polypeptide backbone and CHn moieties. When employing the second combination, 13C=O chemical shifts are not measured, but the sequential assignment relies on both 13C and1 H chemical shifts. The assignment is performed in a semi-automatic fashion using the program XEASY in conjunction with the newly implemented program SPSCAN. This program package offers routines for the facile mutual interconversion of single-quantum and zero/double-quantum frequencies detected in conventional and reduced-dimensionality spectra, respectively. In particular, SPSCAN comprises a peak picking routine tailored to cope with the distinct peak patterns of projected NMR experiments performed with simultaneous acquisition of central peaks. Data were acquired at 13 °C for the N-terminal 63-residue polypeptide fragment of the 434 repressor. Analysis of these spectra, which are representative for proteins of about 15 kDa when working at commonly used temperatures around 30 °C , demonstrates the efficiency of our approach for the assignment of medium-sized15 N/13C doubly labeled proteins.  相似文献   

10.
Summary We present NMR studies of an intramolecular triple helix, the three strands of which have been linked by a hexaethylene glycol chain. To overcome the generally encountered difficulties of assignment in the homopyrimidine strands, the carbon C1 of the pyrimidines were selectively 13C-enriched. Assignments of the aromatic and sugar protons were obtained from NOESY-HMQC and TOCSY-HMQC spectra. We show that the recognition of a DNA duplex by a third strand via triplex formation is easily carried out in solution by observing the changes of the 1H1–13C1 connectivities as a function of pH. Furthermore, the conformation of the sugars has been found to be C2-endo, on the basis of the coupling constant values directly measured in an HSQC spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号