首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Macrophage pseudopodia that surround objects during phagocytosis contain a meshwork of actin filaments and exclude organelles. Between these pseudopodia at the base of developing phagosomes, the organelle exclusion ceases, and lysosomes enter the cell periphery to fuse with the phagosomes. Macrophages also extend hyaline pseudopodia on the surface of nylon wool fibers and secrete lysosomal enzymes into the extracellular medium instead of into phagosomes. To analyze biochemically these concurrent alterations in cytoplasmic architecture, we allowed rabbit lung macrophages to spread on nylon wool fibers and then subjected the adherent cells to shear. This procedure caused the selective release of β-glucoronidase into the extracellular medium and yielded two fractions, cell bodies and isolated pseudopod blebs resembling podosomes, which are plasma-lemma-bounded sacs of cortical cytoplasm. Cytoplasmic extracts of the cell bodies eluted from nylon fibers contained two-thirds less actin-binding protein and myosin, and approximately 20 percent less actin and two-thirds of the other two proteins were accounted for in podosomes. The alterations in protein composition correlated with assays of myosin-associated EDTA-activated adenosine triphosphatase activity, and with a diminution in the capacity of extracts of nylon wool fiber-treated cell bodies to gel, a property dependent on the interaction between actin-binding protein and F-actin. However, the capacity of the remaining actin in cell bodies to polymerize did not change. We propose that actin-binding protein and myosin are concentrated in the cell cortex and particularly in pseudopodia where prominent gelation and syneresis of actin occur. Actin in the regions from which actin-binding protein and myosin are displaced disaggregates without depolymerizing, permitting lysosomes to gain access to the plasmalemma. Translocation of contractile proteins could therefore account for the concomitant differences in organelle exclusion that characterize phagocytosis.  相似文献   

2.
The actin cytoskeleton stress fiber is an actomyosin-based contractile structure seen as a bundle of actin filaments. Although tension development in a cell is believed to regulate stress fiber formation, little is known for the underlying biophysical mechanisms. To address this question, we examined the effects of tension on the behaviors of individual actin filaments during stress fiber (actin bundle) formation using cytosol-free semi-intact fibroblast cells that were pre-treated with the Rho kinase inhibitor Y-27632 to disassemble stress fibers into a meshwork of actin filaments. These filaments were sparsely labeled with quantum dots for live tracking of their motions. When ATP and Ca(2+) were applied to the semi-intact cells to generate actomyosin-based forces, actin meshwork in the protruded lamellae was dragged toward the cell body, while the periphery of the meshwork remained in the original region, indicating that centripetally directed tension developed in the meshwork. Then the individual actin filaments in the meshwork moved towards the cell body accompanied with sudden changes in the direction of their movements, finally forming actin bundles along the direction of tension. Dragging the meshwork by externally applied mechanical forces also exerted essentially the same effects. These results suggest the existence of tension-dependent remodeling of cross-links within the meshwork during the rearrangement of actin filaments, thus demonstrating that tension is a key player to regulate the dynamics of individual actin filaments that leads to actin bundle formation.  相似文献   

3.
Stress fibers play a central role in adhesion, motility, and morphogenesis of eukaryotic cells, but the mechanism of how these and other contractile actomyosin structures are generated is not known. By analyzing stress fiber assembly pathways using live cell microscopy, we revealed that these structures are generated by two distinct mechanisms. Dorsal stress fibers, which are connected to the substrate via a focal adhesion at one end, are assembled through formin (mDia1/DRF1)-driven actin polymerization at focal adhesions. In contrast, transverse arcs, which are not directly anchored to substrate, are generated by endwise annealing of myosin bundles and Arp2/3-nucleated actin bundles at the lamella. Remarkably, dorsal stress fibers and transverse arcs can be converted to ventral stress fibers anchored to focal adhesions at both ends. Fluorescence recovery after photobleaching analysis revealed that actin filament cross-linking in stress fibers is highly dynamic, suggesting that the rapid association-dissociation kinetics of cross-linkers may be essential for the formation and contractility of stress fibers. Based on these data, we propose a general model for assembly and maintenance of contractile actin structures in cells.  相似文献   

4.
Stress fibers are actin bundles encompassing actin filaments, actin-crosslinking, and actin-associated proteins that represent the major contractile system in the cell. Different types of stress fibers assemble in adherent cells, and they are central to diverse cellular processes including establishment of the cell shape, morphogenesis, cell polarization, and migration. Stress fibers display specific cellular organization and localization, with ventral fibers present at the basal side, and dorsal fibers and transverse actin arcs rising at the cell front from the ventral to the dorsal side and toward the nucleus. Perinuclear actin cap fibers are a specific subtype of stress fibers that rise from the leading edge above the nucleus and terminate at the cell rear forming a dome-like structure. Perinuclear actin cap fibers are fixed at three points: both ends are anchored in focal adhesions, while the central part is physically attached to the nucleus and nuclear lamina through the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we discuss recent work that provides new insights into the mechanism of assembly and the function of these actin stress fibers that directly link extracellular matrix and focal adhesions with the nuclear envelope.  相似文献   

5.
We managed to develop a three-dimensional contractile model system using gizzard smooth muscle contractile elements. Phosphorylation of myosin was prerequisite for contraction. A high Mr actin-binding protein (ABP, or filamin), which cross-links actin filaments into a three-dimensional meshwork, was an essential factor for the three-dimensional contraction. Caldesmon suppressed contraction through the inhibition of the actin-ABP and actin-myosin interactions. Further, it was found that calmodulin could overcome the inhibitory effects of caldesmon on the above interactions, resulting in contraction. The possibility of this contractile model system being applied to nonmuscle contractile event is also discussed.  相似文献   

6.
Cells use complex biochemical pathways to drive shape changes for polarization and movement. One of these pathways is the self-assembly of actin filaments and myosin motors that together produce the forces and tensions that drive cell shape changes. Whereas the role of actin and myosin motors in cell polarization is clear, the exact mechanism of how the cortex, a thin shell of actin that is underneath the plasma membrane, can drive cell shape changes is still an open question. Here, we address this issue using biomimetic systems: the actin cortex is reconstituted on liposome membranes, in an ‘outside geometry’. The actin shell is either grown from an activator of actin polymerization immobilized at the membrane by a biotin–streptavidin link, or built by simple adsorption of biotinylated actin filaments to the membrane, in the presence or absence of myosin motors. We show that tension in the actin network can be induced either by active actin polymerization on the membrane via the Arp2/3 complex or by myosin II filament pulling activity. Symmetry breaking and spontaneous polarization occur above a critical tension that opens up a crack in the actin shell. We show that this critical tension is reached by growing branched networks, nucleated by the Arp2/3 complex, in a concentration window of capping protein that limits actin filament growth and by a sufficient number of motors that pull on actin filaments. Our study provides the groundwork to understanding the physical mechanisms at work during polarization prior to cell shape modifications.  相似文献   

7.
《The Journal of cell biology》1986,103(6):2241-2252
Several intracellular motility events in the Caenorhabditis elegans zygote (pseudocleavage, the asymmetric meeting of the pronuclei, the segregation of germ line-specific granules, and the generation of an asymmetric spindle) appear to depend on microfilaments (MFs). To investigate how MFs participate in these manifestations of zygotic asymmetry, the distribution of MFs in oocytes and early embryos was examined, using both antibodies to actin and the F-actin-specific probe rhodamine-phalloidin. In early-stage zygotes, MFs are found in a uniform cortical meshwork of fine fibers and dots or foci. In later zygotes, concomitant with the intracellular movements that are thought to be MF mediated, MFs also become asymmetrically rearranged; as the zygote undergoes pseudocleavage and as the germ line granules become localized in the posterior half of the cell, the foci of actin become progressively more concentrated in the anterior hemisphere. The foci remain anterior as the spindle becomes asymmetric and the zygote undergoes its first mitosis, at which time fibers align circumferentially around the zygote where the cleavage furrow will form. A model for how the anterior foci of actin may participate in zygotic motility events is discussed. Phalloidin and anti-actin antibodies have also been used to visualize MFs in the somatic tissues of the adult gonad. The myoepithelial cells that surround maturing oocytes are visibly contractile and contain an unusual array of MF bundles; the MFs run roughly longitudinally from the loop of the gonad to the spermatheca. Myosin thick filaments are distributed along the MFs in a periodic manner suggestive of a sarcomere-like configuration. It is proposed that these actin and myosin filaments interact to cause sheath cell contraction and the movement of oocytes through the gonad.  相似文献   

8.
Myosin is involved in postmitotic cell spreading   总被引:17,自引:4,他引:13       下载免费PDF全文
We have investigated a role for myosin in postmitotic Potoroo tridactylis kidney (PtK2) cell spreading by inhibitor studies, time- lapse video microscopy, and immunofluorescence. We have also determined the spatial organization and polarity of actin filaments in postmitotic spreading cells. We show that butanedione monoxime (BDM), a known inhibitor of muscle myosin II, inhibits nonmuscle myosin II and myosin V adenosine triphosphatases. BDM reversibly inhibits PtK2 postmitotic cell spreading. Listeria motility is not affected by this drug. Electron microscopy studies show that some actin filaments in spreading edges are part of actin bundles that are also found in long, thin, structures that are connected to spreading edges and substrate (retraction fibers), and that 90% of this actin is oriented with barbed ends in the direction of spreading. The remaining actin in spreading edges has a more random orientation and spatial arrangement. Myosin II is associated with actin polymer in spreading cell edges, but not retraction fibers. Myosin II is excluded from lamellipodia that protrude from the cell edge at the end of spreading. We suggest that spreading involves myosin, possibly myosin II.  相似文献   

9.
10.
Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot–labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto–myosin and MLCK–myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting “stuck” on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle.  相似文献   

11.
Cortices of sea-urchin eggs were studied by electron microscopy to identify the structure responsible for the rise in tension at the egg surface prior to cleavage. During anaphase the tension increased and fine filaments of 70–90 Å in diameter appeared in the cell cortex forming a thin mesh-work beneath the cell membrane. The meshwork spread all around the egg cortex without reference to the mitotic axis and the number of filaments seemed to increase up to telophase. Immediately before appearance of the cleavage furrow, the meshwork in the anticipated furrow region became dense. As the furrow appeared the tension began to decrease and the meshwork disappeared. In the progressing furrow region fine filaments of the same size as that of the meshwork-filament were oriented in a bundle to form a contractile ring. Treatment with cytochalasin B suppressed both the tension increase and the formation of the filamentous meshwork. These results suggest that the component filament of the meshwork is an actin microfilament, and that the tension increase at anaphase is due to formation of a meshwork of actin microfilaments from which a contractile ring is subsequently derived at late telophase.  相似文献   

12.
We have previously demonstrated that alpha-smooth muscle (alpha-SM) actin is predominantly distributed in the central region and beta-non-muscle (beta-NM) actin in the periphery of cultured rabbit aortic smooth muscle cells (SMCs). To determine whether this reflects a special form of segregation of contractile and cytoskeletal components in SMCs, this study systematically investigated the distribution relationship of structural proteins using high-resolution confocal laser scanning fluorescent microscopy. Not only isoactins but also smooth muscle myosin heavy chain, alpha-actinin, vinculin, and vimentin were heterogeneously distributed in the cultured SMCs. The predominant distribution of beta-NM actin in the cell periphery was associated with densely distributed vinculin plaques and disrupted or striated myosin and alpha-actinin aggregates, which may reflect a process of stress fiber assembly during cell spreading and focal adhesion formation. The high-level labeling of alpha-SM actin in the central portion of stress fibers was related to continuous myosin and punctate alpha-actinin distribution, which may represent the maturation of the fibrillar structures. The findings also suggest that the stress fibers, in which actin and myosin filaments organize into sarcomere-like units with alpha-actinin-rich dense bodies analogous to Z-lines, are the contractile structures of cultured SMCs that link to the network of vimentin-containing intermediate filaments through the dense bodies and dense plaques.  相似文献   

13.
To investigate characteristics of ATP-dependent sliding of a non-muscle cell myosin, obtained from a cellular slime mold Dictyostelium discoideum, on actin filament, we prepared hybrid thick filaments, in which Dictyostelium myosin was regularly arranged around paramyosin filaments obtained from a molluscan smooth muscle. A single to a few hybrid filaments were attached to a polystyrene bead (diameter, 4.5 μm; specific gravity, 1.5), and the filaments were made to slide on actin filament arrays (actin cables) in the internodal cell of an alga Chara corallina, mounted on the rotor of a centrifuge microscope. The filament-attached bead was observed to move with a constant velocity under a constant external load for many seconds. The steady-state force–velocity relation of Dictyostelium myosin sliding on actin cables was hyperbolic in shape except for large loads ≤0.7–0.8 P0, being qualitatively similar to that of skeletal muscle fibres, despite a considerable variation in the number of myosin molecules interacting with actin cables. Comparison of the P–V curves between Dictyostelium myosin and muscle myosins sliding on actin cables suggests that the time of attachment to actin in a single attachment–detachment cycle is much longer in Dictyostelium myosin than in muscle myosins.  相似文献   

14.
During fission yeast cytokinesis, actin filaments nucleated by cortical formin Cdc12 are captured by myosin motors bound to a band of cortical nodes and bundled by cross-linking proteins. The myosin motors exert forces on the actin filaments, resulting in a net pulling of the nodes into a contractile ring, while cross-linking interactions help align actin filaments and nodes into a single bundle. We used these mechanisms in a three-dimensional computational model of contractile ring assembly, with semiflexible actin filaments growing from formins at cortical nodes, capturing of filaments by neighboring nodes, and cross-linking among filaments through attractive interactions. The model was used to predict profiles of actin filament density at the cell cortex, morphologies of condensing node-filament networks, and regimes of cortical tension by varying the node pulling force and strength of cross-linking among actin filaments. Results show that cross-linking interactions can lead to confinement of actin filaments at the simulated cortical boundary. We show that the ring-formation region in parameter space lies close to regions leading to clumps, meshworks or double rings, and stars/cables. Since boundaries between regions are not sharp, transient structures that resemble clumps, stars, and meshworks can appear in the process of ring assembly. These results are consistent with prior experiments with mutations in actin-filament turnover regulators, myosin motor activity, and changes in the concentration of cross-linkers that alter the morphology of the condensing network. Transient star shapes appear in some simulations, and these morphologies offer an explanation for star structures observed in prior experimental images. Finally, we quantify tension along actin filaments and forces on nodes during ring assembly and show that the mechanisms describing ring assembly can also drive ring constriction once the ring is formed.  相似文献   

15.
16.
To identify regulatory mechanisms potentially involved in formation of actomyosin structures in smooth muscle cells, the influence of F-actin on smooth muscle myosin assembly was examined. In physiologically relevant buffers, AMPPNP binding to myosin caused transition to the soluble 10S myosin conformation due to trapping of nucleotide at the active sites. The resulting 10S myosin-AMPPNP complex was highly stable and thick filament assembly was suppressed. However, upon addition to F-actin, myosin readily assembled to form thick filaments. Furthermore, myosin assembly caused rearrangement of actin filament networks into actomyosin fibers composed of coaligned F-actin and myosin thick filaments. Severin-induced fragmentation of actin in actomyosin fibers resulted in immediate disassembly of myosin thick filaments, demonstrating that actin filaments were indispensable for mediating myosin assembly in the presence of AMPPNP. Actomyosin fibers also formed after addition of F-actin to nonphosphorylated 10S myosin monomers containing the products of ATP hydrolysis trapped at the active site. The resulting fibers were rapidly disassembled after addition of millimolar MgATP and consequent transition of myosin to the soluble 10S state. However, reassembly of myosin filaments in the presence of MgATP and F-actin could be induced by phosphorylation of myosin P-light chains, causing regeneration of actomyosin fiber bundles. The results indicate that actomyosin fibers can be spontaneously formed by F-actin-mediated assembly of smooth muscle myosin. Moreover, induction of actomyosin fibers by myosin light chain phosphorylation in the presence of actin filament networks provides a plausible hypothesis for contractile fiber assembly in situ.  相似文献   

17.
We report a model describing the various stages of dorsal closure of Drosophila. Inspired by experimental observations, we represent the amnioserosa by 81 hexagonal cells that are coupled mechanically through the position of the nodes and the elastic forces on the edges. In addition, each cell has radial spokes representing actin filaments on which myosin motors can attach and exert contractile forces on the nodes, the attachment being controlled by a signaling molecule. Thus, the model couples dissipative cell and tissue motion with kinetic equations describing the myosin and signal dynamics. In the early phase, amnioserosa cells oscillate as a result of coupling among the chemical signaling, myosin attachment/detachment, and mechanical deformation of neighboring cells. In the slow phase, we test two ratcheting mechanisms suggested by experiments: an internal ratchet by the apical and junctional myosin condensates, and an external one by the supracellular actin cables encircling the amnioserosa. Within the range of parameters tested, the model predictions suggest the former as the main contributor to cell and tissue area reduction in this stage. In the fast phase of dorsal closure, cell pulsation is arrested, and the cell and tissue areas contract consistently. This is realized in the model by gradually shrinking the resting length of the spokes. Overall, the model captures the key features of dorsal closure through the three distinct phases, and its predictions are in good agreement with observations.  相似文献   

18.
Ovarian granulosa cells from small antral follicles from immature rats were cultured in a serum-free medium for 1-6 days with or without the presence of 10(-5) M dehydroepiandrosterone (DHEA) or 10(-5) M-androstenedione (delta 4-A). Control cultures reveal that the cells are flattened and contain many filamentous bundles organized as stress fibers, numerous scattered cytoplasmic actin filaments, microtubules and vimentin. Alpha actinin and myosin were shown by immunocytochemistry to have a punctate pattern along the stress fibers. For the most part, cells exposed to androgens did not flatten; however, they assumed a varied shape and contained fewer stress fibers and actin filaments. Many of these cells did not develop stress fibers and those that did develop were fewer in number and displayed--actinin and myosin in a punctate pattern. Microtubules and vimentin filaments remained unaltered when compared to controls. It is believed that the deficiency of actin filaments, coupled with certain other degenerative changes which express themselves in other cellular compartments, leads to an early atresia of the granulosa cell cultured in high concentrations of androgens.  相似文献   

19.
Length adaptation in airway smooth muscle (ASM) is attributed to reorganization of the cytoskeleton, and in particular the contractile elements. However, a constantly changing lung volume with tidal breathing (hence changing ASM length) is likely to restrict full adaptation of ASM for force generation. There is likely to be continuous length adaptation of ASM between states of incomplete or partial length adaption. We propose a new model that assimilates findings on myosin filament polymerization/depolymerization, partial length adaptation, isometric force, and shortening velocity to describe this continuous length adaptation process. In this model, the ASM adapts to an optimal force-generating capacity in a repeating cycle of events. Initially the myosin filament, shortened by prior length changes, associates with two longer actin filaments. The actin filaments are located adjacent to the myosin filaments, such that all myosin heads overlap with actin to permit maximal cross-bridge cycling. Since in this model the actin filaments are usually longer than myosin filaments, the excess length of the actin filament is located randomly with respect to the myosin filament. Once activated, the myosin filament elongates by polymerization along the actin filaments, with the growth limited by the overlap of the actin filaments. During relaxation, the myosin filaments dissociate from the actin filaments, and then the cycle repeats. This process causes a gradual adaptation of force and instantaneous adaptation of shortening velocity. Good agreement is found between model simulations and the experimental data depicting the relationship between force development, myosin filament density, or shortening velocity and length.  相似文献   

20.
Actin and myosin have been isolated from a guinea pig B cell leukemia line, L2C. The m.w. and amino acid compositions of these proteins are similar to actin and myosin from other nonmuscle cell types. L2C actin polymerizes to form filaments and activates the ATPase activity of skeletal muscle myosin. Actin in crude lymphocyte extracts does not polymerize as well as predicted from the critical concentration of purified lymphocyte actin suggesting that other factors in lymphocyte extracts regulate actin polymerization. Lymphocyte myosin polymerizes to form synthetic filaments at low ionic strength. Lymphocyte myosin binds to actin, but its ATPase activity is not activated by actin. Possible mechanisms for regulation of the lymphocyte contractile apparatus and its importance in a number of lymphocyte functions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号