首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
he presence of proteins in the culture liquid of filamentous fungi under study was found to induce the secretion of proteinases. The inhibitory analysis of the major extracellular proteinases of the saprotrophic fungus Trichoderma harzianum and the phytopathogenic fungus Alternaria alternata showed that they both belong to the group of serine proteinases. The substrate specificity of these proteinases and their sensitivity to inhibitors suggest that the enzyme of T. harzianum is a subtilisin-like proteinase and the enzyme of A. alternata is a trypsin-like proteinase. This difference between the proteinases may reflect the physiological difference between their producers (saprotroph and phytopathogen).  相似文献   

2.
Serine proteinases from three phytopathogenic microorganisms that belong to different fungal families and cause diseases in potatoes were studied and characterized. The oomycete Phytophthora infestans (Mont.) de Bary and the fungi Rhizoctonia solani and Fusarium culmorum were shown to secrete serine proteinases. An analysis of the substrate specificity of these enzymes and their sensitivity to synthetic and protein inhibitors allowed us to refer them to trypsin- and subtilisin-like proteinases. The correlation between the trypsin- and subtilisin-like proteinases depended on the composition of the culture medium, particularly on the form of the nitrogen source. A phylogenetic analysis was carried out. In contrast to basidiomycetes R. solani, ascomycetes F. culmorum and oomycetes P. infestans produced a similar set of exoproteinases, although they had more distant phylogenetic positions. This indicated that the secretion of serine proteinases by various phytopathogenic microorganisms also depended on their phylogenetic position. These results allowed us to suggest that exoproteinases from phytopathogenic fungi play a different role in pathogenesis. They may promote the adaptation of fungi if the range of hosts is enlarged. On the other hand, they may play an important role in the survival of microorganisms in hostile environements outside their hosts.  相似文献   

3.
The presence of proteins in the culture liquid of filamentous fungi under study was found to induce the secretion of proteinases. The inhibitory analysis of the major extracellular proteinases of the saprotrophic fungus Trichoderma harzianum and the phytopathogenic fungus Alternaria alternata showed that they both belong to the group of serine proteinases. The substrate specificity of these proteinases and their sensitivity to inhibitors suggest that the enzyme of T. harzianum is a subtilisin-like proteinase and the enzyme of A. alternata is a trypsin-like proteinase. This difference between the proteinases may reflect the physiological difference between their producers (saprotroph and phytopathogen).  相似文献   

4.
A method was developed to construct cDNA library of pathogenic fungus in the blood of the infected insect for cloning the fungal genes expressed in the host. This method is designed to take advantage of the obvious difference between the cell structures and components of the pathogen cells and that of the host cells. The host blood cells only have cell membrane, which can be disrupted by using SDS/proteinase K (PK). The fungal cells grown in the animal blood have cell wall, which can protect the fungal cell from the disruption of SDS/proteinase K (PK). By this method, the blood cells were disrupted by SDS/proteinase K (PK) and then the released animal RNA and DNA were digested completely with RNase and DNase. Therefore, the fungi grown in the blood were harvested without any contamination of host RNA and DNA. The pure fungi harvested from the infected blood can be used for mRNA extraction and cDNA library construction. The purity of the fungal mRNA was confirmed by PCR and RT-PCR with specific primer pairs for the host and specific primer pairs for the fungus, respectively, and the clones of cDNA library constructed by using the fungal mRNA was also analyzed. The results showed that there was no detectable contaminated insect DNA or RNA existing in the fungal mRNA. Randomly selected cDNA clones from cDNA library were sequenced and analyzed against GenBank using Blastx; no selected sequences had significant similarity with insects’ genes in comparison with the data of GenBank. The results further confirmed that the method to purify the pathogenic fungus from the host animal is reliable and the mRNA extracted from the fungus is eligible for cDNA library construction, and other molecular analysis including RT-PCR. This method may be applied to other pathogenic fungi and their host animals.  相似文献   

5.
Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases.  相似文献   

6.
It was shown that change of medium growth composition of photopathogenic fungus Rhizoctonia solani Kühn, especially accessible sources of nutrition, leads to change of both quantity of produced proteinases and their action specificity. The mineral source of nitrogen suppressed the fungus proteinase secretion on cultivatiin medium containing potato thermostable proteins but an organic source of nitrogen accelerated mycelium growth and increased proteinase secretion. On the basis of an analysis of a fungus extracellular proteinase substrate-specificity, it is established that the presence of thermostable proteins of a potato in the cultural liquid induces the secretion of trypsin-like proteinases mainly, and the addition of yeast extract to this growth medium induces the secretion of subtilisin-like ones, thus suppressing the trypsin-like enzymes production. This fact can indicate that mycelium of fungus R. solani loses pathogenic properties and becomes saprophytes when the growth medium was enriched by an organic source of nitrogen.  相似文献   

7.
8.
Microbiology - A comparative study of the expression of B. pumilus extracellular serine proteinases (subtilisin-like proteinase and glutamyl endopeptidase) under the control of different promoters...  相似文献   

9.
Many socially important fungi encode an elevated number of subtilisin-like serine proteases, which have been shown to be involved in fungal mutualisms with grasses and in parasitism of insects, nematodes, plants, other fungi, and mammalian skin. These proteins have endopeptidase activities and constitute a significant part of fungal secretomes. Here, we use comparative genomics to investigate the relationship between the quality and quantity of serine proteases and the ability of fungi to cause disease in invertebrate and vertebrate animals. Our screen of previously unexamined fungi allowed us to annotate and identify nearly 1000 subtilisin-containing proteins and to describe six new categories of serine proteases. Architectures of predicted proteases reveal novel combinations of subtilisin domains with other, co-occurring domains. Phylogenetic analysis of the most common clade of fungal proteases, proteinase K, showed that gene family size changed independently in fungi, pathogenic to invertebrates (Hypocreales) and vertebrates (Onygenales). Interestingly, simultaneous expansions in the S8 and S53 families of subtilases in a single fungal species are rare. Our analysis finds that closely related systemic human pathogens may not show the same gene family expansions, and that related pathogens and nonpathogens may show the same type of gene family expansion. Therefore, the number of proteases does not appear to relate to pathogenicity. Instead, we hypothesize that the number of fungal serine proteases in a species is related to the use of the animal as a food source, whether it is dead or alive.  相似文献   

10.

Background  

Subtilisin-like serine proteases play an important role in pathogenic fungi during the penetration and colonization of their hosts. In this study, we perform an evolutionary analysis of the subtilisin-like serine protease genes of subphylum Pezizomycotina to find if there are similar pathogenic mechanisms among the pathogenic fungi with different life styles, which utilize subtilisin-like serine proteases as virulence factors. Within Pezizomycotina, nematode-trapping fungi are unique because they capture soil nematodes using specialized trapping devices. Increasing evidence suggests subtilisin-like serine proteases from nematode-trapping fungi are involved in the penetration and digestion of nematode cuticles. Here we also conduct positive selection analysis on the subtilisin-like serine protease genes from nematode-trapping fungi.  相似文献   

11.
The gene encoding a subtilisin-like serine proteinase in the psychrotrophic Vibrio sp. PA44 has been successfully cloned, sequenced and expressed in Escherichia coli. The gene is 1593 basepairs and encodes a precursor protein of 530 amino acid residues with a calculated molecular mass of 55.7 kDa. The enzyme is isolated, however, as an active 40.6-kDa proteinase, without a 139 amino acid residue N-terminal prosequence. Under mild conditions the enzyme undergoes a further autocatalytic cleavage to give a 29.7-kDa proteinase that retains full enzymatic activity. The deduced amino acid sequence of the enzyme has high homology to proteinases of the proteinase K family of subtilisin-like proteinases. With respect to the enzyme characteristics compared in this study the properties of the wild-type and recombinant proteinases are the same. Sequence analysis revealed that especially with respect to the thermophilic homologues, aqualysin I from Thermus aquaticus and a proteinase from Thermus strain Rt41A, the cold-adapted Vibrio-proteinase has a higher content of polar/uncharged amino acids, as well as aspartate residues. The thermophilic enzymes had a higher content of arginines, and relatively higher number of hydrophobic amino acids and a higher aliphatic index. These factors may contribute to the adaptation of these proteinases to different temperature conditions.  相似文献   

12.
An extracellular thiol-dependent serine proteinase was isolated from culture medium filtrate of the microscopic fungus Paecilomyces lilacinus with a yield of 33%. The enzyme is inactivated by specific inhibitors of serine proteinases, phenylmethylsulfonyl fluoride, as well as by chloromercuribenzoate and mercury acetate, but is resistant to chelating agents. The proteinase has broad specificity, hydrolyzes proteins and p-nitroanilides of N-acylated tripeptides, exhibiting maximal activity in hydrolysis of substrates containing long hydrophobic and aromatic residues (norleucine, leucine, phenylalanine) as well as arginine at the P1 position. The enzyme has a molecular weight of 33 kD. The enzyme is most active at pH 10.0-11.5; it is thermostable and is characterized by broad optimum temperature range (30-60 degrees C), displaying about 25% of maximal activity at 0 degrees C. The N-terminal sequence of the enzyme (Gly-Ala-Thr-Thr-Gln-Gly-Ala-Thr-Gly/Ile-Xxx-Gly) has no distinct homology with known primary structures of serine proteinases from fungi and bacilli. Based on its physicochemical and enzymatic properties, the serine proteinase from P. lilacinus can be classified as a thiol-dependent subtilisin-like enzyme.  相似文献   

13.
The growth of Fusarium culmorum fungus on a medium containing thermostable proteins from potato tubers was accompanied by the production of proteinases, exhibiting activity over a broad pH range (from 6.0-10.0). When studied by SDS-PAGE in the presence of beta-mercaptoethanol, extracellular proteinases were represented by at least five species with a molecular weight of 30-60 kDa. Inhibitor analysis and studies of enzyme activities with synthetic substrates demonstrated that the culture liquid of Fusarium culmorum contained serine proteinases of various classes. The amount of subtilisin-like proteinases was the highest. A near-complete inhibition of the enzymes was caused by proteinaceous proteinase inhibitors from potato tubers. These data suggest that proteinases of the phytopathogen Fusarium culmorum serve as a metabolic target for natural inhibitors of potato proteinases.  相似文献   

14.
Abstract: Water-soluble protein fractions from leaves, seeds and heads of sunflower were shown to contain inhibitors of trypsin, chymotrypsin and extracellular proteinases from Sclerotinia sclerotiorum , a pathogen of sunflower, and Colletotrichum lindemuthianum. These included bifunctional inhibitors of trypsin and subtilisin. Comparison with the patterns of inhibition of standard proteinases indicated that the major extracellular proteinases of S. sclerotiorum are subtilisin-like. It is speculated that the sunflower inhibitors play a role in conferring resistance to fungal infection.  相似文献   

15.
Protein patterns of callus from corn (Zea mays L.) inbreds that are either resistant or susceptible to fall armyworm (Spodoptera frugiperda [J.E. Smith]) were analyzed by two-dimensional electrophoresis. Fall armyworm larvae reared on callus initiated from resistant inbreds were significantly smaller than those reared on callus of susceptible inbreds. A 33-kD protein found in callus from the resistant inbreds Mp704 and Mp708 was absent in callus from the susceptible inbreds Tx601 and Ab24E. However, a 36-kD protein found in Ab24E callus immunoreacted with polyclonal antibody raised against the 33-kD protein. When Mp704 nonfriable callus changed to friable, larval growth was not inhibited and the 33-kD protein was absent. There was a significant negative correlation between the concentration of the 33-kD protein in the callus and the weight of the larvae feeding on the callus in the F2 progeny of Mp704 x Tx601. The N-terminal amino acid sequence of the 33-kD protein suggested that it was cysteine proteinase. Purification of the 33- (Mp708) and 36-kD (Ab24E) proteins indicated that they were both cysteine proteinases. The 33-kD cysteine proteinase had 7-fold higher specific activity than the 36-kD enzyme.  相似文献   

16.
The major proteinase activity in extracts of larval midguts from the southern corn rootworm (SCR), Diabrotica undecimpunctata howardi, was identified as a cysteine proteinase that prefers substrates containing an arginine residue in the P1 position. Gelatin-zymogram analysis of the midgut proteinases indicated that the artificial diet-fed SCR, corn root-fed SCR, and root-fed western corn rootworms (Diabrotica virgifera virgifera) possess a single major proteinase with an apparent molecular mass of 25kDa and several minor proteinases. Similar proteinase activity pH profiles were exhibited by root-fed and diet-fed rootworms with the optimal activity being slightly acidic. Rootworm larvae reared on corn roots exhibited significantly less caseinolytic activity than those reared on the artificial diet. Midgut proteolytic activity from SCR was most sensitive to inhibition by inhibitors of cysteine proteinases. Furthermore, rootworm proteinase activity was particularly sensitive to inhibition by a commercial protein preparation from potato tubers (PIN-II). One of the proteins, potato cysteine proteinase inhibitor-10', PCPI-10', obtained from PIN-II by ion-exchange chromatography, was the major source of inhibitory activity against rootworm proteinase activity. PCPI-10' and E-64 were of comparable potency as inhibitors of southern corn rootworm proteinase activity (IC(50) =31 and 35nM, respectively) and substantially more effective than chicken egg white cystatin (IC(50) =121nM). Incorporation of PCPI-10' into the diet of SCR larvae in feeding trials resulted in a significant increase in mortality and growth inhibition. We suggest that expression of inhibitors such as PCPI-10' by transgenic corn plants in the field is a potentially attractive method of host plant resistance to these Diabrotica species.  相似文献   

17.
Cysteine proteinases play a major role in invasion and intracellular survival of a number of pathogenic parasites. We cloned a single copy gene, tgcp1, from Toxoplasma gondii and refolded recombinant enzyme to yield active proteinase. Substrate specificity of the enzyme and homology modeling identified the proteinase as a cathepsin B. Specific cysteine proteinase inhibitors interrupted invasion by tachyzoites. The T. gondii cathepsin B localized to rhoptries, secretory organelles required for parasite invasion into cells. Processing of the pro-rhoptry protein 2 to mature rhoptry proteins was delayed by incubation of extracellular parasites with a cathepsin B inhibitor prior to pulse-chase immunoprecipitation. Delivery of cathepsin B to mature rhoptries was impaired in organisms with disruptions in rhoptry formation by expression of a dominant negative micro1-adaptin. Similar disruption of rhoptry formation was observed when infected fibroblasts were treated with a specific inhibitor of cathepsin B, generating small and poorly developed rhoptries. This first evidence for localization of a cysteine proteinase to the unusual rhoptry secretory organelle of an apicomplexan parasite suggests that the rhoptries may be a prototype of a lysosome-related organelle and provides a critical link between cysteine proteinases and parasite invasion for this class of organism.  相似文献   

18.
A new subtilisin-like proteinase hydrolyzing chromogenic peptide substrate Glp-Ala-Ala-Leu-p-nitroanilide optimally at pH 8.1 was found in common plantain leaves. The protease named plantagolisin was isolated by ammonium sulfate precipitation of the leaves' extract followed by affinity chromatography on bacitracin-Sepharose and ion-exchange chromatography on Mono Q in FPLC regime. Its molecular mass is 19000 Da and pI 5.0. pH-stability range is 7-10 in the presence of 2 mM Ca(2+), temperature optimum is 40 degrees C. The substrate specificity of subtilase towards synthetic peptides and insulin B-chain is comparable with that of two other subtilisin-like serine proteinases: proteinase from leaves of the sunflower and taraxalisin. Besides, the proteinase is able to hydrolyze substrates with Pro in P(1) position. The enzyme hydrolyzes collagen. alpha and beta chains are hydrolyzed simultaneously in parallel; there are only low-molecular-mass hydrolysis products in the sample after 2 h of incubation. Pure serine proteinase was inactivated by specific serine proteinases inhibitors: diisopropylfluorophosphate, phenylmethylsulfonyl fluoride and Hg(2+). The plantagolisin N-terminal sequence ESNSEQETQTESGPGTAFL-, traced for 19 residues, revealed 37% homology with that of subtilisin from yeast Schizosaccharomyces pombe.  相似文献   

19.
The growth of Fusarium culmorum fungus on a medium containing thermostable proteins from potato tubers was accompanied by the production of proteinases, exhibiting activity over a broad pH range (from 6.0–10.0). When studied by SDS-PAGE in the presence of β-mercaptoethanol, extracellular proteinases were represented by at least five species with a molecular weight of 30–60 kDa. Inhibitor analysis and studies of enzyme activities with synthetic substrates demonstrated that the culture liquid of Fusarium culmorum contained serine proteinases of various classes. The amount of subtilisin-like proteinases was the highest. A near-complete inhibition of the enzymes was caused by proteinaceous proteinase inhibitors from potato tubers. These data suggest that proteinases of the phytopathogen Fusarium culmorum serve as a metabolic target for natural inhibitors of potato proteinases.  相似文献   

20.
Two subtilisin-like serine proteinases of Bacillus intermedius secreted by the Bacillus subtilis recombinant strain AJ73 (pCS9) on the 28th and 48th h of culture growth (early and late proteinase, respectively) have been isolated by ion-exchange chromatography on CM-cellulose and by FPLC. Molecular weights of both proteinases were determined. The N-terminal sequences of the recombinant protein and mature proteinases of the original strain were compared. Kinetic parameters and substrate specificities of the early and late proteinase were analyzed. Physicochemical properties of the enzymes were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号