首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Jan Karlsson 《Oikos》2007,116(10):1691-1696
This study investigates the allocation of allochthonous organic carbon (AlloOC) to pelagic respiration and biomass production in unproductive lakes. Metabolic process rates and stable isotopic composition (δ13C) of crustacean zooplankton and respired CO2 were measured in the epilimnion of 13 forest lakes in northern Sweden. The δ13C of zooplankton was low (−31.2 to −38.0‰) compared to that of respired CO2 (−28.4 to −30.6‰), implying that the relative importance of AlloOC was lower for zooplankton (ca 40%) than for respiration (ca 80%). Combining δ13C and carbon flux data revealed that a large amount of metabolized AlloOC was lost in respiration, compared to the amount transferred to zooplankton (<3%). Thus, despite large respiratory losses, AlloOC was still important for zooplankton growth, implying a high supply of AlloOC in comparison to phytoplankton generated organic carbon in the lakes.  相似文献   

2.
The dynamics of the nutrient pools and their stoichiometry as well as their control by ecosystem metabolism (benthic and planktonic) and benthic–pelagic exchanges (sedimentation rates and sediment waterfluxes) were examined in the Mediterranean littoral (Blanes Bay, NE Spain). Dissolved organic nitrogen comprised about half of the nitrogen present in the water column and the carbon pool was dominated by the inorganic pool (95% of the carbon present in the water column). The dissolved and particulate organic pools were deficient in P relative to C and N, indicating a rapid recycling of P from organic matter. The pelagic compartment was heterotrophic, supported by significant allochthonous inputs of land material, which also contributed greatly to the sedimentary inputs (37% of total sedimenting carbon). In contrast, the benthic compartment was autotrophic, with the excess net benthic community production balancing the deficit in pelagic community production, leading to metabolic equilibrium at the station studied. Sedimentary inputs of nitrogen, phosphorus and silicon exceeded the benthic release, indicating that the benthic compartment acted as a sink for nutrients, consistent with its autotrophic nature. Carbon inputs to the benthic compartment also exceeded requirements, due to the allochthonous subsidies to the system, so that the benthic compartment stored or exported organic carbon. An erratum to this article can be found at .  相似文献   

3.
1. The underwater light climate and benthic moss communities of Grane Langsø were investigated in May 1997 to determine the potential effects on benthic production of changing water column attenuation and spectral quality of light.
2. A reduction in water clarity in the lake since the 1960s was manifested as a marked increase in the attenuation of blue light, relative to red light, which can be attributed to increased dissolved organic carbon.
3. The biomass of the benthic moss community ranged from a maximum of 195 gDW m−2 at a depth of 4 m to 39 g DW m−2 at a depth of 10 m and Drepanocladus exannulatus contributed 70% of the biomass at all depths.
4. Absorption of PAR by D. exannulatus was maximal in the highly pigmented youngest parts of the plant and these correspondingly showed the highest rates of net photosynthesis. The absolute amount of chlorophyll- a per g dry weight was greater at 10 m than 2 m, but the ratio of accessory pigments to chlorophyll- a did not change. Deep growing plants did not show adaptation to changed light quality.
5. Increased attenuation of blue light and the resultant overall decrease in water clarity is likely to impact negatively on net annual production of benthic macrophytes of Grane Langsø. Any further increase in dissolved organic carbon concentration has the potential to markedly decrease the depth to which mosses grow by reducing the length of time in a year during which net photosynthesis occurs.  相似文献   

4.
The dissolved inorganic carbon (DIC) cycle in a softwater lake was studied using natural variations of the stable isotopes of carbon,12C and13C. During summer stratification there was a progressive decrease in epilimnion DIC concentration with a concomitant increase in 13CDIC), due to preferential uptake of12C by phytoplankton and a change in the dominant CO2 source from inflow andin situ oxidation to invasion from the atmosphere. There was an increase in hypolimnion DIC concentration throughout summer with a concomitant general decrease in 13CDIC from oxidation of the isotopically light particulate organic carbon that sank down through the thermocline from the epilimnion.Mass balance calculations of DI12C and DI13C in the epilimnion for the summer (June 23–September 25) yield a mean rate of net conversion of DIC to organic carbon (Corg) of 430 ± 150 moles d-1 (6.5 ± 1.8 m moles m-2 d-1. Net CO2 invasion from the atmosphere was 420 ± 120 moles d-1 (6.2 ± 1.8 m moles m-2 d-1) with an exchange coefficient of 0.6 ± 0.3m d-1. These results imply that at least for the summer months the phytoplankton obtained about 90% of their carbon from atmosphere CO2. About 50% of CO2 invasion and conversion to Corg for the summer occurred during a two week interval in mid-summer.DIC concentration increased in the hypolimnion at a rate of 350 ± 70 moles DIC d-1 during summer stratification. The amount of DIC added to the hypolimnion was equivalent to 75 ± 20% of net conversion of DIC to Corg in the euphotic zone over spring and summer implying rapid degradation of POC in the hypolimnion. The 13C of DIC added to the deep water (-22.) was too heavy to have been derived from oxidation of particulate organic carbon alone. About 20% of the added DIC must have diffused from hypolimnetic sediments where relatively heavy CO2 (-7) was produced by a combination of POC oxidation and as a by-product of methanogenesis.  相似文献   

5.
We characterized spatial and temporal variability in net ecosystem production (NEP), community respiration (CR), and gross primary production (GPP) over an ice-free season in an oligotrophic high-elevation lake using high-frequency measurements of dissolved oxygen. We combined the use of free-water and incubation chamber measurements to compare pelagic and benthic habitats and estimate their relative contributions to whole-lake metabolism. Despite a brief period of predominant heterotrophy after snowmelt, both free-water and incubation chamber measurements confirmed autotrophy of the epilimnion in all habitats throughout the ice-free season. In contrast, benthic incubation chambers showed the benthos to be consistently heterotrophic. Although temperature was the strongest seasonal driver of benthic metabolism, bacterioplankton density and indexes of organic matter quality explained the most variability in pelagic metabolism. Driven largely by benthic metabolism, free-water measurements of GPP and CR were twice as high in littoral than pelagic habitats. However, rates of water column primary production overlying the littoral benthos were high enough to overcome net benthic heterotrophy, and seasonal mean NEP in littoral habitats remained positive and not significantly different from pelagic habitats. Benthic rates averaged about 25% of whole-lake metabolism. Pelagic metabolism measurements were affected by littoral rates about half the time, with the degree of isolation between the two a function of advection and water column stability. These results emphasize the importance of characterizing spatial and temporal variability in metabolism within the context of physical dynamics and challenge the notion that benthic metabolism will necessarily be larger than pelagic metabolism in oligotrophic lakes.  相似文献   

6.
Shallow high-latitude lakes and ponds are usually characterized by an oligotrophic water column overlying a biomass-rich, highly productive benthos. Their pelagic food webs often contain abundant zooplankton but the importance of benthic organic carbon versus seston as their food sources has been little explored. Our objectives were to measure the δ13C and δ15N isotopic signatures of pelagic and benthic particulate organic matter (POM) in shallow water bodies in northern Canada and to determine the relative transfer of this material to zooplankton and other aquatic invertebrates. Fluorescence analysis of colored dissolved organic matter (CDOM) indicated a relatively strong terrestrial carbon influence in five subarctic waterbodies whereas the CDOM in five arctic water columns contained mostly organic carbon of autochthonous origin. The isotopic signatures of planktonic POM and cohesive benthic microbial mats were distinctly different at all study sites, while non-cohesive microbial mats often overlapped in their δ13C signals with the planktonic POM. Zooplankton isotopic signatures indicated a potential trophic link with different fractions of planktonic POM and the non-cohesive mats whereas the cohesive mats did not appear to be used as a major carbon source. The zooplankton signals differed among species, indicating selective use of resources and niche partitioning. Most zooplankton had δ13C values that were intermediate between the values of putative food sources and that likely reflected selective feeding on components of the pelagic or benthic POM. The results emphasize the likely importance of benthic-pelagic coupling in tundra ecosystems, including for species that are traditionally considered pelagic and previously thought to be dependent only on phytoplankton as their food source.  相似文献   

7.
1. Increased water motion is expected to reduce boundary layer diffusion resistance of autotrophs, thereby enabling greater isotopic discrimination against 13C such that lower δ13C values (ratio of 13C : 12C) should ensue. A field test of this hypothesis was undertaken by sampling benthic algae in streams of differing current speed.
2. Contrary to the expected negative relationship between δ13C and water motion, filamentous benthic algae were found to exhibit higher δ13C values in rapid water.
3. Under conditions of low current in the streams studied, concentrations of dissolved organic carbon as measured by water colour are elevated through the microbial decomposition of largely terrestrial organic matter. Photoassimilation of this respired carbon by benthic filamentous algae generates 13C‐depletion and lower δ13C values, and appears to be substantial enough in the streams used in the present study to override the competing influence of water motion on boundary layer thickness.  相似文献   

8.
Climatic variables, water quality, benthic fluxes, sediment properties, and infauna were measured six times over an annual cycle in a shallow sub-tropical embayment to characterize carbon and nutrient cycling, and elucidate the role of pelagic–benthic coupling. Organic carbon (OC) inputs to the bay are dominated by phytoplankton (mean 74%), followed by catchment inputs (15%), and benthic microalgae (BMA; 9%). The importance of catchment inputs was highly variable and dependent on antecedent rainfall, with significant storage of allochthonous OC in sediments following high flow events and remineralization of this material supporting productivity during the subsequent period. Outputs were dominated by benthic mineralization (mean 59% of total inputs), followed by pelagic mineralization (16%), burial (1%), and assimilation in macrofaunal biomass (2%). The net ecosystem metabolism (NEM = production minus respiration) varied between ?4 and 33% (mean 9%) of total primary production, whereas the productivity/respiration (p/r) ranged between 0.96 and 1.5 (mean 1.13). Up to 100% of the NEM is potentially removed via the demersal detritivore pathway. Dissolved inorganic nitrogen (DIN) inputs from the catchment contributed less than 1% of the total phytoplankton demand, implicating internal DIN recycling (pelagic 23% and benthic 19%) and potentially benthic dissolved organic nitrogen (DON) fluxes (27%) or N fixation (up to 47%) as important processes sustaining productivity. Although phytoplankton dominated OC inputs in this system, BMA exerted strong seasonal controls over benthic DIN fluxes, limiting pelagic productivity when mixing/photic depth approached 1.3. The results of this study suggest low DIN:TOC and net autotrophic NEM may be a significant feature of shallow sub-tropical systems where the mixing/photic depth is consistently less than 4.  相似文献   

9.
1. Secondary production of benthic invertebrates in lakes is supported by current autochthonous primary production, and by detritus derived from a combination of terrestrial inputs and old autochthonous production from prior seasons. We quantified the importance of these two resources for the dominant benthic insects in Crampton Lake, a 26 ha, clear-water system.
2. Daily additions of NaH13CO3 to the lake caused an increase in the stable carbon isotope ratios ( δ 13C) of the current primary production of phytoplankton and periphyton. We measured the response of four insect groups (taxon-depth combinations) to this manipulation, quantifying their current autochthony (% reliance on current autochthonous primary production) by fitting dynamic mixing models to time series of insect δ 13C.
3. The δ 13C of all four groups increased in response to the manipulation, although the magnitude of response differed by taxon and by depth, indicating differences in current autochthony. Odonate larvae (Libellulidae and Corduliidae) collected at 1.5 m depth derived 75% of their C from current autochthonous primary production. Chironomid larvae collected at 1.5, 3.5 and 10 m depths derived, respectively, 43%, 39% and 17% of their C from current autochthonous primary production.
4. Both taxon-specific diet preferences and depth-specific differences in resource availability may contribute to differences in current autochthony. Our results demonstrate significant but incomplete support of insect production by current autochthony, and indicate that allochthonous inputs and old autochthonous detritus support a substantial fraction (25–83%) of insect production.  相似文献   

10.
We used stable carbon (δ13C) and nitrogen (δ15N) isotopes to assess the importance of benthic algae for the zooplankton individual growth in winter in a shallow, clear subarctic lake. The δ13C values of calanoid ( Eudiaptomus graciloides ) and cyclopoid ( Cyclops scutifer ) zooplankton in autumn suggest a food resource of pelagic origin during the ice-free period. The zooplankton δ13C values were high in spring compared to autumn. E. graciloides did not grow over winter and the change in δ13C was attributed to a decrease in lipid content during the winter. In contrast, the increase in δ13C values of C. scutifer over the winter was explained by their growth on organic carbon generated by benthic algae. The δ15N of the C. scutifer food resource during winter was low compared to δ15N of the benthic community, suggesting that organic matter generated by benthic algae was mainly channelled to zooplankton via 15N-depleted heterotrophic bacteria. The results demonstrate that benthic algae can sustain zooplankton metabolic demands and growth during long winters, which, in turn, may promote zooplankton growth on pelagic resources during the summer. Such multi-chain omnivory challenges the view of zooplankton as mainly dependent on internal primary production and stresses the importance of benthic resources for the productivity of plankton food webs in shallow lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号