首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungal entomopathogens have been used more frequently than other types of pathogens for classical biological control. Among 136 programs using different groups of arthropod pathogens, 49.3% have introduced fungal pathogens (including both the traditional fungi and microsporidia). The most commonly introduced species was Metarhizium anisopliae (Metschnikoff) Sorokin, with 13 introductions, followed by Entomophaga maimaiga Humber, Shimazu & Soper, which was released seven times. The majority of introduction programs have focused on controlling invasive species of insects or mites (70.7%) rather than on native hosts (29.4%). Almost half of the introductions of traditional fungi targeted species of Hemiptera and 75% of the microsporidia introduced have been introduced against lepidopteran species. The United States was the country where most introductions of fungi took place (n = 24). From 1993 to 2007, no arthropod pathogens were released in the US due to the rigorous regulatory structure, but in 2008 two species of microsporidia were introduced against the gypsy moth, Lymantria dispar (L.). Establishment of entomopathogenic fungi in programs introducing traditional fungi was 32.1% and establishment was 50.0% for programs introducing microsporidia. In some programs, releases have resulted in permanent successful establishment with no non-target effects. In summary, classical biological control using fungal entomopathogens can provide a successful and environmentally friendly avenue for controlling arthropod pests, including the increasing numbers of invasive non-native species.  相似文献   

2.
Projects to manage arthropod pests using entomopathogenic nematodes (EPNs) in Brazil, Korea and USA are reviewed to identify conditions and practices that affected the use of EPNs for pest management. A proliferation of covered agriculture in Korea, the growth in demand for high value, pesticide-free produce in Korea and Brazil, and the cost-effectiveness of EPNs created favorable conditions for the widespread adoption of EPN products in Brazilian guava orchards and Korean vegetable greenhouses. In Florida, EPNs imported from South America function successfully as classical biocontrol agents against invasive mole crickets attacking pasture and turf. However, the low value of pasture and the availability of cost-effective chemical insecticides in turf have depressed the demand for EPN products to control mole crickets. In Florida citrus orchards, a recent, dramatic increase in the use of chemical insecticides to control an arthropod vector of a devastating bacterial disease of citrus (huanglongbing) reduced the demand for EPN products to control Diaprepes root weevils. Nevertheless, a rich and diverse EPN fauna in the Florida peninsula provides significant control of subterranean stages of root weevils in some habitats, and is the focus of research to develop cultural practices that exploit the potential for increased pest management through EPN conservation.  相似文献   

3.
化学防治自1940年代后虽然为农业和医界害虫防治带来许多的经济效益。相对的。因其对非标的生物(有益生物,野生生物.家畜及农场操作人员)有毒害作用.及其残留量(residue)可在空气中.土壤,水中发现.又可经作物带给消费。也使我们得考虑其安全性.  相似文献   

4.
Naturally occurring entomopathogens are important regulatory factors in insect populations. Many species are employed as biological control agents of insect pests in row and glasshouse crops, orchards, ornamentals, range, turf and lawn, stored products, and forestry and for abatement of pest and vector insects of veterinary and medical importance. The comparison of entomopathogens with conventional chemical pesticides is usually solely from the perspective of their efficacy and cost. In addition to efficacy, the advantages of use of microbial control agents are numerous. These include safety for humans and other nontarget organisms, reduction of pesticide residues in food, preservation of other natural enemies, and increased biodiversity in managed ecosystems. As with predators and parasitoids, there are three basic approaches for use of entomopathogens as microbial control agents: classical biological control, augmentation, and conservation. The use of a virus (Oryctes nonoccluded virus), a fungus (Entomophaga maimaiga), and a nematode (Deladenus siricidicola) as innoculatively applied biological control agents for the long-term suppression of palm rhinoceros beetle (Oryctes rhinoceros), gypsy moth (Lymantria dispar), and woodwasp (Sirex noctilio), respectively, has been successful. Most examples of microbial control involve inundative application of entomopathogens. The most widely used microbial control agent is the bacterium Bacillus thuringiensis. The discovery of new varieties with activity against Lepidoptera, Coleoptera, and Diptera and their genetic improvement has enhanced the utility of this species. Recent developments in its molecular biology, mode of action, and resistance management are reviewed. Examples of the use, benefits, and limitations of entomopathogenic viruses, bacteria, fungi, nematodes, and protozoa as inundatively applied microbial control agents are presented. Microbial control agents can be effective and serve as alternatives to broad-spectrum chemical insecticides. However, their increased utilization will require (1) increased pathogen virulence and speed of kill; (2) improved pathogen performance under challenging environmental conditions (cool weather, dry conditions, etc.); (3) greater efficiency in their production; (4) improvements in formulation that enable ease of application, increased environmental persistence, and longer shelf life; (5) better understanding of how they will fit into integrated systems and their interaction with the environment and other integrated pest management (IPM) components; (6) greater appreciation of their environmental advantages; and (7) acceptance by growers and the general public. We envision a broader appreciation for the attributes of entomopathogens in the near to distant future and expect to see synergistic combinations of microbial control agents with other technologies. However, if future development is only market driven, there will be considerable delays in the implementation of several microbial control agents that have excellent potential for use in IPM programs.  相似文献   

5.
The invasive Red Palm Weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), is one of the most destructive pests of ornamental and economically important palms globally. It has been found in 50 % of date‐growing and 15 % of coconut‐producing countries in the world. Synthetic organic insecticides have been the default method to combat this pest, but they are clearly inefficient due to the secretive nature of the insect and there is concern about non‐target effects from blanket spraying. For this reason, there is increasing interest in biological control methods such as the possible use of microbial entomopathogens, which might be incorporated into IPM approaches. In this review we summarize research work on microbial control agents, their effectiveness against RPW and their integration with other control measures.  相似文献   

6.
Entomopathogenic nematodes (EPNs) have been utilized in classical, conservation, and augmentative biological control programs. The vast majority of applied research has focused on their potential as inundatively applied augmentative biological control agents. Extensive research over the past three decades has demonstrated both their successes and failures for control of insect pests of crops, ornamental plants, trees and lawn and turf. In this paper we present highlights of their development for control of insect pests above and below ground. The target insects include those from foliar, soil surface, cryptic and subterranean habitats. Advances in mass-production and formulation technology of EPNs, the discovery of numerous efficacious isolates/strains, and the desirability of reducing pesticide usage have resulted in a surge of commercial use and development of EPNs. Commercially produced EPNs are currently in use for control of scarab larvae in lawns and turf, fungus gnats in mushroom production, invasive mole crickets in lawn and turf, black vine weevil in nursery plants, and Diaprepes root weevil in citrus in addition to other pest insects. However, demonstrated successful control of several other insects, often has not lead to capture of a significant share of the pesticide market for these pests.  相似文献   

7.
Predators of apple and pear pests in northern and central Europe and their use as biological control agents are reviewed. Many natural enemy species are specialized feeders and are able to respond to the population dynamics of particular pest species. The most oustandingly successful example of this is the use of phytoseiid mites, particularly Typhlodromus pyri , against phytophagous pest mites in apple. This mite management strategy is now widespread throughout European apple growing regions. Another example is the use of Anthocoris nemoralis against pear psyllids, Cacopsylla pyricola and C. pyri . Several groups of naturally occurring polyphagous predators, such as chrysopids, coccinellids, syrphids and spiders, also prey on a number of pest species in orchards, contributing generally to the reduction in pest populations. However, they are unlikely alone to prevent pest damage fully and reliably. In seeking biological control opportunities for a particular pest, these polyphagous natural enemies are unlikely to be a high priority. An exception, due to its abundance in orchards, is the common earwig, Forficula auricularia , although this predator may also cause some fruit injury. Another option to consider when reviewing possibilities for biological control in orchards is the introduction of biological control agents. The success rate of this approach, using arthropod predators to control pests of field crops, has been generally poor. Furthermore, mass production methods for predators are likely to be difficult and very costly. The biological supplies industry is constantly seeking culture techniques, largely for arthropod biological control agents of pests of protected crops. It is possible that some future advance may be relevant to orchards, though currently available predators do not appear promising. A careful economic appraisal of the feasibility of use of any potential biological control agent would be prudent before embarking on research.  相似文献   

8.
Several fruit fly species (Diptera: Tephritidae) are invasive pests that damage the quality of fruits in horticultural crops and cause significant value losses worldwide. Management of fruit flies mainly depends on conventional insecticides. Unfortunately, the application of synthetic insecticides has caused environmental pollution, risks for humans and animals, and development of resistance. Furthermore, controlling fruit flies by applying synthetic insecticides is challenging because fruit containing third instars often fall from the tree – subsequently the larvae leave the decaying fruits and pupate in the soil. Consequently, both larvae and pupae are protected from surface-applied insecticides in fruits and soil. So, there is a pressing need for more eco-friendly and selective control measures with new modes of action. Among such measures are entomopathogenic fungi (EPFs) and nematodes (EPNs). I gathered knowledge on past and present research about EPFs and EPNs as biocontrol agents against fruit flies to investigate approaches that may improve their capacities. I also highlighted several recommendations that may help future field studies on the suppression of fruit fly populations by EPFs and EPNs.  相似文献   

9.
High biodiversity is an important component of sustainable agricultural systems, and previous studies have found that increases in the diversity of the natural enemies of pests are associated with decreases in pest populations. Weaver ants are well known for their highly territorial and aggressive behaviour and for their control efficiency of many insect pests in tropical crop trees. Because of this, the ants have been used as a key component in integrated pest management (IPM) programmes for tropical crop trees. In implementing the IPM programmes, we received a number of enquiries related to whether weaver ants have negative effects on arthropod diversity and other natural enemies in orchard systems due to their aggressive behaviour. To answer these questions, we regularly sampled canopy arthropods in cashew and mango orchards in the Northern Territory of Australia in 1996, 2002 and 2003. We sampled, using a vacuum sampler, orchards with and without weaver ants. Cashew and mango plots with abundant weaver ants had similar or higher canopy arthropod and natural enemy diversity and similar ratios of natural enemies to insect pests, compared with plot where the weaver ant was absent. The study also showed that the application of insecticides reduced arthropod diversity and the ratio of natural enemies to insect pests in a mango orchard. However, insecticide spray did not affect natural enemy diversity and abundance, which may be related to a high immigration rate of natural enemies in small plots surrounded by areas that were not sprayed.  相似文献   

10.
Diseases of Mites   总被引:6,自引:0,他引:6  
An overview is given of studies on diseases of mites. Knowledge of diseases of mites is still fragmentary but in recent years more attention has been paid to acaropathogens, often because of the economic importance of many mite species. Most research on mite pathogens concerns studies on fungal pathogens of eriophyoids and spider mites especially. These fungi often play an important role in the regulation of natural mite populations and are sometimes able to decimate populations of phytophagous mites. Studies are being conducted to develop some of these fungi as commercial acaricides.Virus diseases are known in only a few mites, namely, the citrus red mite and the European red mite. In both cases, non-occluded viruses play an important role in the regulation of mite populations in citrus and peach orchards, respectively, but application of these viruses as biological control agents does not seem feasible. A putative iridovirus has been observed in association with Varroa mites in moribund honeybee colonies. The virus is probably also pathogenic for honeybees and may be transmitted to them through this parasitic mite.Few bacteria have been reported as pathogens of the Acari but in recent years research has been concentrated on intracellular organisms such as Wolbachia that may cause distorted sex ratios in offspring and incompatibility between populations. The role of these organisms in natural populations of spider mites is in particular discussed. The effect of Bacillus thuringiensis on mites is also treated in this review, although its mode of action in arthropods is mainly due to the presence of toxins and it is, therefore, not considered to be a pathogen in the true sense of the word.Microsporidia have been observed in several mite species especially in oribatid mites, although other groups of mites may also be affected. In recent years, Microsporidia infections in Phytoseiidae have received considerable attention, as they are often found in mass rearings of beneficial arthropods. They affect the efficacy of these predators as biological control agent of insect and mite pests. Microsporidia do not seem to have potential for biological control of mites.  相似文献   

11.
Use of predators, parasitoids and entomopathogens as biocontrol agents in pome fruit production can lead to more efficient and sustainable pest management programmes. The European earwig (Forficula auricularia Linnaeus [Dermaptera: Forficulidae]) is a major predator of key pests in pome fruit orchards, and entomopathogenic nematodes (EPNs) of the families Steinernematidae and Heterorhabditidae are obligate parasites of a large number of insect species. Therefore, the interaction between earwigs and EPNs can play an important role in pest management programmes. Susceptibility of the European earwig to Steinernema carpocapsae, Steinernema feltiae (Steinernematidae) and Heterorhabditis bacteriophora (Heterorhabditidae) was evaluated. S. carpocapsae was the only tested EPN capable of killing the European earwig. However, the European earwig can detect the presence of S. carpocapsae and therefore avoid nematode‐treated shelters. An earwig deterrent activity in EPN‐killed codling moth larvae that reduces the foraging of European earwig on insect cadavers containing nematodes and allows nematodes to complete their life cycle was also assessed with the three species of nematodes. These findings suggest a positive compatibility between the European earwig and EPNs.  相似文献   

12.
Six Alabama Satsuma mandarin orchards (four conventionally sprayed and two unsprayed) were surveyed during 2005 and 2006 to determine the population dynamics of arthropod pests and their natural enemies. Twenty-eight arthropod pest species were encountered; the major foliage pests were citrus whitefly, Dialeurodes citri (Ashmead); purple scale, Lepidosaphes beckii (Newman); Glover scale, L. gloveri (Packard); and citrus red mite, Panonychus citri (McGregor). Two distinct population peaks were recorded for citrus whitefly at most locations. The most important direct sources of citrus whitefly mortality were parasitism by Encarsia lahorensis (Howard) and infection by the pathogenic fungus, Aschersonia aleyrodis Webber. In general, all stages of both scale insects (purple scale and Glover scale) were present in the orchards year-round, indicative of overlapping generations; however, the highest densities were recorded during the early season. Citrus whitefly, purple scale, and Glover scale were more abundant on leaves collected from the interior of the tree canopy than in the exterior canopy. Citrus red mite densities were highest in the spring, with populations declining at the start of the summer, and were more abundant in the exterior canopy than in the interior canopy. The most important natural enemies of citrus red mite were predatory mites belonging to several families, of which Typhlodromalus peregrinus Muma (Phytoseiidae) was the predominant species. Major differences were recorded in the relative abundance of different arthropod pest species in the orchards: citrus whitefly, purple scale, and Glover scale predominated in the unsprayed orchards, whereas citrus red mite infestations were more severe in the sprayed orchards. The results are discussed in relation to the possible effect of orchard management practices on abundance of the major pests.  相似文献   

13.
To determine the wild host plants of four major spider mite species infesting fruit crops grown in the subtropical Asian region, we collected and identified mites from non-crop plants throughout the islands of Okinawa, southwestern Japan. Although the two mango pests, Oligonychus coffeae and O. biharensis, are polyphagous, they did not share any wild host species in the field, indicating that their source plants are completely separate in Okinawa. Several major wild hosts were determined for Eutetranychus africanus, a pest of papaya and citrus. Its host range partially overlapped with that of O. biharensis. The citrus red mite, Panonychus citri, was very rare on non-crop plants in Okinawa, suggesting that it maintains its population mainly on the citrus trees in the area. These results are of great significance when considering vegetation control as part of the integrated management of these pest mites. During our survey, two non-pest species, Panonychus caglei (new to Japan) and Oligonychus gotohi (new to Okinawa), were also found.  相似文献   

14.
For more than three decades the coconut mite Aceria guerreronis Keifer is one of the most important pests of coconut palms and has recently spread to many coconut production areas worldwide. Colonization of coconut palms is thought to arise from mites dispersing aerially after take-off from other plants within the same plantation or other plantations. The underlying dispersal behaviour of the mite at take-off, in the airborne state and after landing is largely unknown and this is essential to understand how they spread from tree to tree. In this article we studied whether take-off to aerial dispersal of coconut mites is preceded by characteristic behaviour, whether there is a correlation between the body position preceding aerial dispersal and the direction of the wind, and whether the substrate (outer surface of coconut bracts or epidermis) and the wind speed matter to the decision to take-off. We found that take-off can sometimes be preceded by a raised body stance, but more frequently take-off occurs while the mite is walking or resting on its substrate. Coconut mites that become airborne assumed a body stance that had no relation to the wind direction. Take-off was suppressed on a substrate providing food to coconut mites, but occurred significantly more frequently on the outer surface of coconut bracts than on the surface of the fruit. For both substrates, take-off frequency increased with wind speed. We conclude that coconut mites have at least some degree of control over take-off for aerial dispersal and that there is as yet no reason to infer that a raised body stance is necessary to become airborne.  相似文献   

15.
Fungal entomopathogens in the rhizosphere   总被引:1,自引:0,他引:1  
The ecology of fungal entomopathogens in the rhizosphere is an understudied area of insect pathology. The rhizosphere is the region of soil in which the release of root exudates influences the soil microbiota, and may provide a favorable environment for fungal entomopathogens. The objective of this review is to bring together the relatively scant data available to date on the subject of fungal entomopathogens colonizing the rhizosphere and to highlight the importance of these findings. Gaining a better understanding of the ecology of fungal entomopathogens in the rhizosphere will help in the development of successful microbial control strategies against root-feeding insect pests.  相似文献   

16.
【背景】台湾芒果是我国南方种植的最重要的热带水果之一,其分布广、产量高,极具经济价值。福建地处台湾海峡西岸,与台湾隔海相望,气候条件与台湾相仿,所以台湾芒果很容易在福建定植。然而,台湾芒果在福建的大面积种植,带来了新的虫害问题。因此,掌握台湾芒果园害虫发生的动态及规律对其防治具有重要意义。【方法】2006年8月~2007年8月对福建省惠安县台湾芒果树冠层节肢动物群落进行系统调查。【结果】共采集到28247头节肢动物,隶属于2纲15目79科145种。其中,害虫76种(占总群落物种数的52.41%)、天敌42种(占28.97%)、中性昆虫27种(占18.62%)。芒果园节肢动物的物种丰富度、个体数、群落多样性、均匀性和优势集中性等都呈明显的季节消长规律。多样性指数表现为总群落〉天敌亚群落〉中性昆虫亚群落〉害虫亚群落;均匀度表现为天敌亚群落〉中性昆虫亚群落〉总群落〉害虫亚群落;优势集中性指数表现为害虫亚群落〉中性昆虫亚群落〉总群落〉天敌亚群落。生态优势度测定显示:芒果小爪螨和茶黄蓟马是害虫中的优势种;主要天敌有腹管食螨瓢虫和园蛛科等,优势种是腹管食螨瓢虫;中性昆虫主要以双翅目的花翅摇蚊、啮虫目的凹翅单啮及膜翅目的中国小黑家蚁和红蚂蚁为主。【结论与意义】本研究为芒果园生物资源及天敌的保护与利用、芒果害虫的预测预报和持续控制提供了理论依据。  相似文献   

17.
刘军和  宋丽  禹明甫 《生态科学》2012,31(5):519-524
对间种牧草杂交杏李园节肢动物群落结构与组成的系统定位观察与分析表明:杂交杏李园害虫种类有蚜虫类、叶螨类、食心虫类、介壳虫类、吮吸类、食叶类等,危害最为严重的是蚜虫类、叶螨类和食心虫类,这三种害虫的数量直接影响果实的产量。蓄草果园的天敌种类主要有蜘蛛类、瓢虫类和草蛉类,这三类天敌对主要害虫具有一定的控制作用,而且对维持果园害虫及其天敌之间平衡起着重要作用。对各功能类群的数量结构、生态优势度和多样性分析表明,间种牧草果园节肢动物群落结构比较稳定,各种群落指标相对平衡,天敌自然控害效果比较明显。分析认为果园有害生物综合治理应坚持大量利用自然天敌为主的生态控制的途径,不断优化果园生物群落结构、提高群落多样性和均匀度,减少群落生态优势度,增强群落自身调节控害能力,辅助使用农药,逐步达到生态控制果园有害生物的目的。  相似文献   

18.
While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene) from citrus roots 9-12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus) compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis) again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests.  相似文献   

19.
Entomopathogenic fungi, such as Beauveria bassiana and Metarhizium anisopliae, are environmentally friendly biocontrol agents (BCAs) against various arthropod pests. We provide an overview to the past-decade advances in fungal BCA research and application in China. Since 1960s, fungal BCAs have been mass-produced for application and at present, thousands of tons of their formulations are annually applied to control forest, agricultural, greenhouse and grassland insect pests throughout the country. Apart from technical advances in mass production, formulation and application of fungal BCAs, basic studies on the genomics, molecular biology, genetic engineering and population genetics of fungal entomopathogens have rapidly progressed in the past few years in China. The completed genomic studies of M. anisopliae, Metarhizium acridum, B. bassiana and Cordyceps militaris provide profound insights into crucial gene functions, fungal pathogenesis, host–pathogen interactions and mechanisms involved in fungal sexuality. New knowledge gained from the basic studies has been applied to improve fungal virulence and stress tolerance for developing more efficacious and field-persistent mycoinsecticides by means of microbial biotechnology, such as genetic engineering. To alleviate environmental safety concerns, more efforts are needed to generate new data not only on the effects of engineered BCAs on target and non-target arthropods but also on their potential effects on gene flow and genetic recombination before field release.  相似文献   

20.
《环境昆虫学报》2015,37(4):849-856
柑橘是我国重要的岭南特色水果,种植面积广,产量大。在生产过程中,柑橘容易受到各类病虫害的危害。因为害虫抗药性的产生以及化学农药使用带来的负面影响,害虫生物防治成为今后柑橘害虫可持续防控的重要策略。本文以桔小实蝇、柑橘木虱、介壳虫以及柑橘潜叶蛾、柑橘卷叶蛾、柑橘凤蝶等柑橘重要害虫及其寄生蜂为研究对象,对近年来国内外在柑橘害虫生物防治领域,尤其是寄生蜂的研究与利用等方面取得的最新进展进行了综述,以期不断推进我国柑橘害虫生物防治技术的研究与应用,保障我国柑橘产业的健康发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号