首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.

Key message

An efficient, reproducible, and genotype-independent in planta transformation has been developed for sugarcane using setts as explant.

Abstract

Traditional Agrobacterium-mediated genetic transformation and in vitro regeneration of sugarcane is a complex and time-consuming process. Development of an efficient Agrobacterium-mediated transformation protocol, which can produce a large number of transgenic plants in short duration is advantageous. Hence, in the present investigation, we developed a tissue culture-independent in planta genetic transformation system for sugarcane using setts collected from 6-month-old sugarcane plants. The sugarcane setts (nodal cuttings) were infected with three Agrobacterium tumefaciens strains harbouring pCAMBIA 1301–bar plasmid, and the transformants were selected against BASTA®. Several parameters influencing the in planta transformation such as A. tumefaciens strains, acetosyringone, sonication and exposure to vacuum pressure, have been evaluated. The putatively transformed sugarcane plants were screened by GUS histochemical assay. Sugarcane setts were pricked and sonicated for 6 min and vacuum infiltered for 2 min at 500 mmHg in A. tumefaciens C58C1 suspension containing 100 µM acetosyringone, 0.1 % Silwett L-77 showed the highest transformation efficiency of 29.6 % (with var. Co 62175). The three-stage selection process completely eliminated the chimeric transgenic sugarcane plants. Among the five sugarcane varieties evaluated using the standardized protocol, var. Co 6907 showed the maximum transformation efficiency (32.6 %). The in planta transformation protocol described here is applicable to transfer the economically important genes into different varieties of sugarcane in relatively short time.
  相似文献   

2.

Key message

An efficient, reproducible and genotype-independent in planta transformation has been standardized for sugarcane using seed as explant.

Abstract

Transgenic sugarcane production through Agrobacterium infection followed by in vitro regeneration is a time-consuming process and highly genotype dependent. To obtain more number of transformed sugarcane plants in a relatively short duration, sugarcane seeds were infected with Agrobacterium tumefaciens EHA 105 harboring pCAMBIA 1304-bar and transformed plants were successfully established without undergoing in vitro regeneration. Various factors affecting sugarcane seed transformation were optimized, including pre-culture duration, acetosyringone concentration, surfactants, co-cultivation, sonication and vacuum infiltration duration. The transformed sugarcane plants were selected against BASTA® and screened by GUS and GFP visual assay, PCR and Southern hybridization. Among the different combinations and concentrations tested, when 12-h pre-cultured seeds were sonicated for 10 min and 3 min vacuum infiltered in 100 µM acetosyringone and 0.1 % Silwett L-77 containing Agrobacterium suspension and co-cultivated for 72-h showed highest transformation efficiency. The amenability of the standardized protocol was tested on five genotypes. It was found that all the tested genotypes responded favorably, though CoC671 proved to be the best responding cultivar with 45.4 % transformation efficiency. The developed protocol is cost-effective, efficient and genotype independent without involvement of any tissue culture procedure and can generate a relatively large number of transgenic plants in approximately 2 months.  相似文献   

3.
For the first time we have developed a reliable and efficient vacuum infiltration-assisted Agrobacterium-mediated genetic transformation (VIAAT) protocol for Indian soybean cultivars and recovered fertile transgenic soybean plants through somatic embryogenesis. Immature cotyledons were used as an explant and three Agrobacterium tumefaciens strains (EHA 101, EHA 105, and KYRT 1) harbouring the binary vector pCAMBIA1301 were experimented in the co-cultivation. The immature cotyledons were pre-cultured in liquid somatic embryo induction medium prior to vacuum infiltration with the Agrobacterium suspension and co-cultivated for 3 days on co-cultivation medium containing 50 mg l?1 citric acid, 100 µM acetosyringone, and 100 mg l?1 l-cysteine. The transformed somatic embryos were selected in liquid somatic embryo induction medium containing 10 mg l?1 hygromycin and the embryos were germinated in basal medium containing 20 mg l?1 hygromycin. The presence and integration of the hpt II and gus genes into the soybean genome were confirmed by GUS histochemical assay, polymerase chain reaction, and Southern hybridization. Among the different combinations tested, high transformation efficiency (9.45 %) was achieved when immature cotyledons of cv. Pusa 16 were pre-cultured for 18 h and vacuum infiltrated with Agrobacterium tumefaciens KYRT 1 for 2 min at 750 mm of Hg. Among six Indian soybean cultivars tested, Pusa 16 showed highest transformation efficiency of 9.45 %. The transformation efficiency of this method (VIAAT) was higher than previously reported sonication-assisted Agrobacterium-mediated transformation. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into soybean has been developed.  相似文献   

4.
Algal-based recombinant protein production has gained immense interest in recent years. The development of algal expression system was earlier hindered due to the lack of efficient and cost-effective transformation techniques capable of heterologous gene integration and expression. The recent development of Agrobacterium-mediated genetic transformation method is expected to be the ideal solution for these problems. We have developed an efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Pre-treatment of Agrobacterium in TAP induction medium (pH 5.2) containing 100 μM acetosyringone and 1 mM glycine betaine and infection of Chlamydomonas with the induced Agrobacterium greatly improved transformation frequency. This protocol was found to double the number of transgenic events on selection media compared to that of previous reports. PCR was used successfully to amplify fragments of the hpt and GUS genes from transformed cells, while Southern blot confirmed the integration of GUS gene into the genome of C. reinhardtii. RT-PCR, Northern blot and GUS histochemical analyses confirm GUS gene expression in the transgenic cell lines of Chlamydomonas. This protocol provides a quick, efficient, economical and high-frequency transformation method for microalgae.  相似文献   

5.
Jute is a crop of commercial importance that is widely cultivated for its bast fiber production but susceptible to many diseases that results in major economic loss. New genes can be introduced into this plant through Agrobacterium mediated genetic transformation for its genetic improvement, which is dependent on the availability of suitable in vitro techniques. An efficient regeneration system has been developed for in vitro culture of jute (Corchorus capsularis) from the distal cut ends of cotyledonary petioles. High frequency shoot regeneration was obtained on Murashige and Skoog (MS) nutrient agar medium supplemented with 0.5 mg/l NAA, 0.5 mg/l BAP and 36 g/l sucrose. On transfer to soil, the regenerated plantlets survived and appeared to be morphologically similar to the normal seed-grown plants. They developed pods and set fertile seeds. Histological analysis revealed de novo origin of shoot buds in the in vitro cultured cotyledonary petioles. Parameters affecting transformation were optimized by assaying GUS activity in these regenerable tissues after cocultivation with Agrobacteria. These tissues appear to be susceptible for infection and transformation by Agrobacterium carrying uid (GUS INT) and nptII genes, as well as shoot multiplication. The cells at the cut end of the petioles were found competent to take up the DNA, which was monitored by transient GUS gene expression. EHA105 at 0.3 O.D and LBA4404 at 0.5 O.D were found to be compatible in giving optimal levels of transient GUS expression.  相似文献   

6.

Key message

Agrobacterium tumefaciens strains differ not only in their ability to transform tomato Micro-Tom, but also in the number of transgene copies that the strains integrate in the genome.

Abstract

The transformation efficiency of tomato (Solanum lycopersicum L.) cv. Micro-Tom with Agrobacterium tumefaciens strains AGL1, EHA105, GV3101, and MP90, harboring the plasmid pBI121 was compared. The presence of the nptII and/or uidA transgenes in regenerated T0 plants was determined by PCR, Southern blotting, and/or GUS histochemical analyses. In addition, a rapid and reliable duplex, qPCR TaqMan assay was standardized to estimate transgene copy number. The highest transformation rate (65 %) was obtained with the Agrobacterium strain GV3101, followed by EHA105 (40 %), AGL1 (35 %), and MP90 (15 %). The mortality rate of cotyledons due to Agrobacterium overgrowth was the lowest with the strain GV3101. The Agrobacterium strain EHA105 was more efficient than GV3101 in the transfer of single T-DNA insertions of nptII and uidA transgenes into the tomato genome. Even though Agrobacterium strain MP90 had the lowest transformation rate of 15 %, the qPCR analysis showed that the strain MP90 was the most efficient in the transfer of single transgene insertions, and none of the transgenic plants produced with this strain had more than two insertion events in their genome. The combination of higher transformation efficiency and fewer transgene insertions in plants transformed using EHA105 makes this Agrobacterium strain optimal for functional genomics and biotechnological applications in tomato.  相似文献   

7.
An efficient and reproducible Agrobacterium-mediated genetic transformation of Withania coagulans was achieved using leaf explants of in vitro multiple shoot culture. The Agrobacterium strain LBA4404 harboring the binary vector pIG121Hm containing β-glucuronidase gene (gusA) under the control of CaMV35S promoter was used in the development of transformation protocol. The optimal conditions for the Agrobacterium-mediated transformation of W. coagulans were found to be the co-cultivation of leaf explants for 20 min to agrobacterial inoculum (O.D. 0.4) followed by 3 days of co-cultivation on medium supplemented with 100 μM acetosyringone. Shoot bud induction as well as differentiation occurred on Murashige and Skoog medium supplemented with 10.0 μM 6-benzylaminopurine, 8.0 μM indole 3-acetic acid, and 50.0 mgl?1 kanamycin after three consecutive cycles of selection. Elongated shoots were rooted using a two-step procedure involving root induction in a medium containing 2.5 μM indole 3-butyric acid for 1 week and then transferred to hormone free one-half MS basal for 2 weeks. We were successful in achieving 100 % frequency of transient GUS expression with 5 % stable transformation efficiency using optimized conditions. PCR analysis of T0 transgenic plants showed the presence of gusA and nptII genes confirming the transgenic event. Histochemical GUS expression was observed in the putative transgenic W. coagulans plants. Thin layer chromatography showed the presence of similar type of withanolides in the transgenic and non-transgenic regenerated plants. A. tumefaciens mediated transformation system via leaf explants developed in this study will be useful for pathway manipulation using metabolic engineering for bioactive withanolides in W. coagulans, an important medicinal plant.  相似文献   

8.
Agrobacterium-mediated transformation of indica rice varieties has been quite difficult as these are recalcitrant to in vitro responses. In the present study, we established a high-efficiency Agrobacterium tumefaciens-mediated transformation system of rice (Oryza sativa L. ssp. indica) cv. IR-64, Lalat, and IET-4786. Agrobacterium strain EHA-101 harboring binary vector pIG121-Hm, containing a gene encoding for β-glucuronidase (GUS) and hygromycin resistance, was used in the transformation experiments. Manipulation of different concentrations of acetosyringone, days of co-culture period, bacterial suspension of different optical densities (ODs), and the concentrations of l-cysteine in liquid followed by solid co-culture medium was done for establishing the protocol. Among the different co-culture periods, 5 days of co-culture with bacterial cells (OD600 nm?=?0.5–0.8) promoted the highest frequency of transformation (83.04 %) in medium containing l-cysteine (400 mg l?1). Putative transformed plants were analyzed for the presence of a transgene through genomic PCR and GUS histochemical analyses. Our results also suggest that different cultural conditions and the addition of l-cysteine in the co-culture medium improve the Agrobacterium-mediated transformation frequencies from an average of 12.82 % to 33.33 % in different indica rice cultivars.  相似文献   

9.
An efficient and reproducible Agrobacterium-mediated transformation system via repetitive secondary somatic embryogenesis was developed for Rosa rugosa ‘Bao white’. Somatic embryogenesis was induced from in vitro-derived unexpanded leaflet explants on MS medium supplemented with 4.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), 0.05 mg/L Kinetin and 30 g/L glucose. Secondary somatic embryos were successfully proliferated via cyclic secondary somatic embryogenesis on MS medium containing 1.0 mg/L 2,4-D, 0.01 mg/L 6-benzyladenine and 45 g/L glucose under light intensity of 500–1,000 lux. The highest germination rate (86.33 %) of somatic embryos was observed on 1/2-strength MS medium containing 1.0 mg/L BA. Relying on the repetitive secondary somatic embryogenesis and A. tumefaciens strain EHA105 harboring the binary vector pBI121, a stable and effective Agrobacterium-mediated transformation pattern was developed. The presented transformation protocol, in which somatic embryo clumps at globular stage (0.02–0.04 g) were infected by Agrobacterium for 60 min and co-cultivated for 2 days, and then selected under a procedure of 3 steps, were confirmed to be optional by GUS histochemical assay and Southern blot analysis. The procedure described here will be very useful for the introgression of desired genes into R. rugosa ‘Bao white’ and the molecular analysis of gene function.  相似文献   

10.
Agrobacterium-mediated transformation in chickpea was developed using strain LBA4404 carrying nptII, uidA and cryIAc genes and transformants selected on Murashige and Skoog’s basal medium supplemented with benzyladenine, kinetin and kanamycin. Integration of transgenes was demonstrated using polymerase chain reaction and Southern blot hybridization of T0 plants. The expression of CryIAc delta endotoxin and GUS enzyme was shown by enzyme linked immunosorbent assay and histochemical assay respectively. The transgenic plants (T0) showed more tolerance to infection by Helicoverpa armigera compared to control plants. Various factors such as explant source, cultivar type, different preculture treatment period of explants, co-cultivation period, acetosyringone supplementation, Agrobacterium harboring different plasmids, vacuum infiltration and sonication treatment were tested to study the influence on transformation frequency. The results indicated that use of epicotyl as explant, cultivar ICCC37, Agrobacterium harboring plasmid pHS102 as vector, preculture of explant for 48 h, co-cultivation period of 2 days at 25°C and vacuum infiltration for 15 min produced the best transformation results. Sonication treatment of explants with Agrobacteria for 80 s was found to increase the frequency of transformation.  相似文献   

11.
Withania somnifera one of the most reputed Indian medicinal plant has been extensively used in traditional and modern medicines as active constituents. A high frequency genotype and chemotype independent Agrobacterium-mediated transformation protocol has been developed for W. somnifera by optimizing several factors which influence T-DNA delivery. Leaf and node explants of Withania chemotype was transformed with A. tumefaciens strain GV3101 harboring pIG121Hm plasmid containing the gusA gene encoding β-glucuronidase (GUS) as a reporter gene and the hptII and the nptII gene as selection markers. Various factors affecting transformation efficiency were optimized; as 2 days preconditioning of explants on MS basal supplemented with TDZ 1 μM, Agrobacterium density at OD600 0.4 with inclusion of 100 μM acetosyringone (As) for 20 min co-inoculation duration with 48 h of co-cultivation period at 22 °C using node explants was found optimal to improved the number of GUS foci per responding explant from 36?±?13.2 to 277.6?±?22.0, as determined by histochemical GUS assay. The PCR and Southern blot results showed the genomic integration of transgene in Withania genome. On average basis 11 T0 transgenic plants were generated from 100 co-cultivated node explants, representing 10.6 % transformation frequency. Our results demonstrate high frequency, efficient and rapid transformation system for further genetic manipulation in Withania for producing engineered transgenic Withania shoots within very short duration of 3 months.  相似文献   

12.
An efficient Agrobacterium-mediated genetic transformation method has been developed for the medicinal plant Podophyllum hexandrum Royle, an important source of the anticancer agent podophyllotoxin. Highly proliferating embryogenic cells were infected with Agrobacterium tumefaciens harbouring pCAMBIA 2301, which contains npt II and gusA as selection marker and reporter genes, respectively. The transformed somatic embryos and plantlets were selected on Murashige and Skoog (MS) basal medium containing kanamycin and germination medium, respectively. GUS histochemical analysis, polymerase chain reaction and Southern blot hybridisation confirmed that gusA was successfully integrated and expressed in the P. hexandrum genome. Compared with cefotaxime, 200 mg l?1 timentin completely arrested Agrobacterium growth and favoured somatic embryo development from embryogenic cells. Among the different Agrobacterium strains, acetosyringone concentrations and co-cultivation durations tested, embryogenic callus infected with A. tumefaciens EHA 105 and co-cultivated for 3 days on MS basal medium containing 100 μM acetosyringone proved to be optimal and produced a transformation efficiency of 29.64 % with respect to germinated GUS-positive plantlets. The Agrobacterium-mediated genetic transformation method developed in the present study facilitates the transference of desirable genes into P. hexandrum to improve the podophyllotoxin content and to enhance other useful traits.  相似文献   

13.
Safflower is an important oilseed crop with a nutritionally desirable oil composition comprising low levels of saturated fatty acids and high levels of unsaturated fatty acids. In this study, a robust, genotype-independent plant regeneration protocol was developed for geographically diverse safflower genotypes, including one accession each from America, Australia, Egypt, Germany, Kazakhstan and three important Indian genotypes (Sharda, Bhima and PBNS-12). Use of cotyledonary nodes as explants resulted in genotype-independent regeneration on BAP (6-Benzylaminopurine), NAA (Naphthalene acetic acid) and ascorbic acid supplemented MS medium. Histological analysis revealed that multiple shoot apical meristems originated independently from peripheral cortical regions of explants. We developed a highly efficient in vitro micrografting method which enabled successful rooting of 85–90 % of regenerated shoots. An efficient genetic transformation system was also established for three Indian genotypes viz., Sharda, Bhima and PBNS-12 using the Agrobacterium strain, LBA4404 and phosphinothricin as the selection agent. This is the first report on use of phosphinothricin-based selection and cotyledonary nodes as explants for Agrobacterium-mediated transformation of safflower. Use of vacuum infiltration-assisted Agrobacterium infection and inclusion of a pre-culture step significantly increased transformation frequencies in all the three genotypes as seen by GUS assays on transformed calli. Genomic integration and transgene expression were confirmed by PCR, Southern hybridization and GUS assays. Most transgenic plants (90 %) exhibited a normal phenotype when grown under controlled conditions and produced viable seeds. This protocol would be useful for introduction of desirable traits in diverse genotypes of safflower.  相似文献   

14.
Apple has become a model species for Rosaceae genetic and genomic research, but it is difficult to obtain transgenic apple plants by Agrobacterium-mediated transformation using in vitro leaves as explants. In this study, we developed an efficient regeneration and Agrobacterium-mediated transformation system for crab apple (Malus micromalus) using cotyledons as explants. The proximal cotyledons of M. micromalus, excised from seedlings that emerged from mature embryos cultured for 10–14 d in vitro, were suitable as explants for regeneration and Agrobacterium-mediated transformation. Cotyledon explants were cocultivated for 3 d with Agrobacterium tumefaciens strain EHA105 harboring the binary vector pCAMBIA2301 on regeneration medium. Kanamycin-resistant buds were produced on cotyledon explants cultured on selective regeneration medium containing 20 mg/L kanamycin. Acetosyringone supplemented in the Agrobacterium suspension or in the cocultivation medium slightly enhanced the regeneration of kanamycin-resistant buds. The maximum percentage of explants with kanamycin-resistant buds was 11.7%. The putative transformed plants were confirmed by histochemical analysis of β-glucuronidase activity and the polymerase chain reaction amplification of the neomycin phosphotransferase II gene. This transformation system also enables recovery of nontransformed isogenic controls developed from embryo buds and is therefore suitable for functional genomics studies in apple.  相似文献   

15.
Tissue culture has been widely employed in Jatropha curcas L. for the clonal multiplication of superior genotypes. However, the evaluation of genetic stability is necessary to detect somaclonal variants. In this context, the present aim was to evaluate the genetic stability of J. curcas plantlets, obtained via indirect organogenesis, by means of ISSR markers. To supply the explant sources for in vitro propagation, the first generation of plants was produced from in vitro germination of J. curcas seeds. Fragments of cotyledonary leaves were inoculated into medium supplemented with 1.5 mg L?1 BAP and 0.05 mg L?1 of IBA for induction of callogenesis. The resulting calli were transferred to bud induction medium. Subsequently, the buds were cultured in medium for elongation, giving rise to the second generation of plants. These plants provided new buds, which were excised and subcultured in elongation medium, yielding a third generation of plants. To evaluate genetic stability in three plant generations, twelve ISSR primers were used, resulting in 124 bands showing 41.93 % of polymorphism. Increase was observed in the level of somaclonal variation (SV) over the generations. The present study reports, for the first time, the analysis of genetic stability in J. curcas plantlets regenerated via indirect organogenesis by means of ISSR markers. The results suggest that the indirect route is associated to higher levels of genetic instability, which also increased with successive subcultures. The ISSR markers were efficient in detecting SV, and the generated genetic variability may be useful for breeding programs.  相似文献   

16.
In this study, leaf midribs, the elite explants, were used for the first time to develop an efficient regeneration and transformation protocol for ramie [Boehmeria nivea (L.) Gaud.] via Agrobacterium-mediated genetic transformation. Sensitivity of leaf midribs regeneration to kanamycin was evaluated, which showed that 40 mg l?1 was the optimal concentration needed to create the necessary selection pressure. Factors affecting the ramie transformation efficiency were evaluated, including leaf age, Agrobacterium concentration, length of infection time for the Agrobacterium solution, acetosyringone concentration in the co-cultivation medium, and the co-cultivation period. The midrib explants from 40-day-old in vitro shoots, an Agrobacterium concentration at OD600 of 0.6, 10-min immersion in the bacteria solution, an acetosyringone concentration of 50 mg l?1 in the co-cultivation medium and a 3-day co-cultivation period produced the highest efficiencies of regeneration and transformation. In this study, the average transformation rate was 23.25 %. Polymerase chain reactions using GUS and NPTII gene-specific primers, Southern blot and histochemical GUS staining analyses further confirmed that the transgene was integrated into the ramie genome and expressed in the transgenic ramie. The establishment of this system of Agrobacterium-mediated genetic transformation and regeneration of transgenic plants will be used not only to introduce genes of interest into the ramie genome for the purpose of trait improvement, but also as a common means of testing gene function by enhancing or inhibiting the expression of target genes.  相似文献   

17.
18.
Seol E  Jung Y  Lee J  Cho C  Kim T  Rhee Y  Lee S 《Plant cell reports》2008,27(7):1197-1206
Notocactus scopa cv. Soonjung was subjected to in planta Agrobacterium tumefaciens-mediated transformation with vacuum infiltration, pin-pricking, and a combination of the two methods. The pin-pricking combined with vacuum infiltration (20-30 cmHg for 15 min) resulted in a transformation efficiency of 67-100%, and the expression of the uidA and nptII genes was detected in transformed cactus. The established in planta transformation technique generated a transgenic cactus with higher transformation efficiency, shortened selection process, and stable gene expression via asexual reproduction. All of the results showed that the in planta transformation method utilized in the current study provided an efficient and time-saving procedure for the delivery of genes into the cactus genome, and that this technique can be applied to other asexually reproducing succulent plant species.  相似文献   

19.
Winter jujube, a species that originated in China, is the most prominent elite variety of jujube (Zizyphus jujuba Mill.). Due to its economic value and its recalcitrance to improvements through traditional plant breeding approaches, genetic transformation techniques may have a great potential in providing the means to transfer one or more selected desirable traits into the plant genome. We reported here an improved protocol for the Agrobacterium-mediated transformation of shoot tips of winter jujube. We have identified a set of optimum transformation conditions that take into account Agrobacterium inoculum density, Agrobacterium incubation period, co-cultivation conditions, and vacuum (use of a vacuum pump to create a negative-pressure environment). The highest transformation frequency (5.2%) was obtained when the shoot-tip explants were infected for 10 min and co-cultured for 4 days with Agrobacterium at OD600 0.8 under a negative pressure of 0.5 × 105 Pa. PCR and southern blot analyses confirmed the presence of transgenic plants and the stable integration of the target gene into the genome of regenerated plants. A histochemical staining analysis for GUS activity in the transgenic shoot tips also validated the efficiency of the transformation system.  相似文献   

20.
Limonium bicolor, a typical recretohalophyte, has a specialized salt-secreting structure in the epidermis called the salt gland and plays a significant role in improving saline land. Understanding the molecular mechanisms of salt secretion and salt gland development requires an efficient L. bicolor transformation system, which is described in this report. Leaf explants were incubated with Agrobacterium tumefaciens strain EHA105 harboring the plasmid pTCK303 containing the β-glucuronidase gene (GUS) as the transgene reporter and the hygromycin B resistance gene as a selectable marker. Up to 96.9% of leaves were induced to regenerate shoots on an Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzyladenine and 1.1 μM α-naphthaleneacetic acid; roots were induced on the MS medium containing 2.5 μM indole-3-butyric acid. This tissue culture system was suitable for Agrobacterium-mediated transformation of L. bicolor. Pre-cultivated explants (2 d old) were incubated with Agrobacterium (0.6–0.7 at OD600) in a shaking culture for 20 min; the explants and bacterium were co-cultivated for 4 d in the dark before the explants were transferred to a selection medium containing 8 mg/L hygromycin B and 600 mg/L piperacillin sodium (added to prevent continued Agrobacterium growth). Histochemical assays and PCR to detect the GUS gene showed that transformation frequency was 4.43%. Quantitative PCR and Northern blotting further verified the integration and presence of the GUS gene in L. bicolor. This is the first report of an Agrobacterium-based transformation system for L. bicolor. The system will facilitate a research on the identity and function of genes involved in salt gland development and salt secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号