首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 160 毫秒
1.
生物造粒流化床微生物落结构及其动态变化   总被引:1,自引:0,他引:1  
为了研究生物造粒流化床污水处理反应器颗粒污泥中微生物群落结构及其动态变化,分别从生物造粒流化床10、60、110cm处取颗粒污泥,通过细胞裂解直接提取颗粒污泥细菌基因组DNA。以细菌和古细菌16S rRNA基因通用引物530F/1490R,对活性污泥中提取的细菌基因组DNA进行PCR扩增,长约1kb的PCR扩增产物纯化后经变性梯度凝胶电泳(DGGE)分离,获得微生物群落的DNA特征指纹图谱。结果显示,生物造粒流化床反应器颗粒污泥中的微生物群落非常丰富,在10cm处微生物的种属达到23种,60cm处为21种,110cm处为20种;生物造粒流化床不同高度都有一些各自的特有种属和共有种属,反应器不同高度的微生物群落演替不明显,微生物群落相似性为83.1%,群落结构较为稳定。  相似文献   

2.
生物造粒流化床微生物群落结构及其动态变化   总被引:1,自引:0,他引:1  
为了研究生物适粒流化床污水处理反应器颗粒污泥中微生物群落结构及其动态变化,分别从生物造粒流化床10、60、110 cm处取颗粒污泥,通过细胞裂解直接提取颗粒污泥细菌基因组DNA.以细菌和古细菌16S rRNA基因通用引物530F/1490R,对活性污泥中提取的细菌基因组DNA进行PCR扩增,长约1 kb的PCR扩增产物纯化后经变性梯度凝胶电泳(DGGE)分离,获得微生物群落的DNA特征指纹图谱.结果显示,生物造粒流化床反应器颗粒污泥中的微生物群落非常丰富,在10 cm处微生物的种属达到23种,60 cm处为21种,110 cm处为20种;生物造粒流化床不同高度都有一些各自的特有种属和共有种属,反应器不同高度的微生物群落演替不明显,微生物群落相似性为83.1%,群落结构较为稳定.  相似文献   

3.
DGGE技术监测生物制氢反应器微生物群落结构和演替   总被引:3,自引:1,他引:2  
为了研究生物制氢反应器微生物群落结构, 揭示混合菌群的生态学效能. 从连续流生物制氢反应器CSTR运行不同时期取活性污泥, 利用变性梯度凝胶电泳(DGGE)技术研究了产氢混合菌群的多样性和动态变化. 研究表明, 反应器从启动到乙醇型发酵稳定的运行, 经历了明显的微生物群落结构演替过程, 28天后反应器微生物群落结构基本恒定, 形成顶级群落. 16S rDNA 序列同源性分析表明, 优势种群为低G + C含量革兰氏阳性细菌分支的Clostridium sp.和Ethanologenbacterium sp., b变形菌亚纲的Acidovorax sp., g变形菌亚纲的Kluyvera sp.和一些未被培养的拟杆菌群的细菌和螺旋体. 21天后产氢细菌Ethanologenbacterium sp., Clostridium sp. (Clostridiaceae bacterium 80 Kb)和一些未被培养的螺旋体群细菌的数量明显增加, 形成乙醇型发酵群落, 产氢量大幅度提高. 群落经过演替微生物多样性增强后降低, 在群落演替过程中一直存在的Clostridium sp., sp., Kluyvera sp.和未被培养的拟杆菌群等是构成群落结构的基本种群, 混合菌群之间存在着共代谢作用, 共同决定产氢效能.  相似文献   

4.
新疆一号冰川土壤细菌多样性的研究   总被引:6,自引:0,他引:6  
应用变性梯度凝胶电泳(DGGE)技术分离PCR扩增的16SrDNA来研究土壤微生物的多样性。直接从新疆一号冰川不同海拔高度的土壤样品中提取总DNA。用两套细菌通用引物分别扩增16SrDNA的V3和V6/V9高变区的特异性片段,PCR产物进行DGGE分析。PCR—DGGE图谱表明,PCR产物经DGGE检测到的条带清晰且分离效果好。结果表明,PCR—DGGE是一种快速研究微生物群落结构的有效方法。  相似文献   

5.
为了研究生物造粒流化床污水处理反应器颗粒污泥的微生物种群多样性,分别从生物造粒流化床10、60和110cm处取颗粒污泥,通过细胞裂解直接提取颗粒污泥细菌基因组DNA,PCR扩增后经变性梯度凝胶电泳(DGGE)分离,获得微生物群落的DNA特征指纹图谱,对特征条带进行序列测定及序列同源性分析。16S rRNA序列分析表明,获得的18个OTUs均属于细菌域,其中61%属于变形菌,17%属于放线菌,11%属于低G C革兰氏阳性菌,11%属于其它未知细菌。  相似文献   

6.
【目的】研究水稻土淹水培养过程中Fe-氢酶微生物的多样性,对于揭示Fe-氢酶微生物的群落演替规律和产氢微生物的生化代谢机理具有重要的意义。【方法】采用PCR-变性梯度凝胶电泳和实时定量PCR技术进行基于梭菌属Fe-氢酶基因的多样性和丰度的分析。【结果】水稻土淹水培养过程中Fe-氢酶基因的变性梯度凝胶电泳图谱显示,培养1-5 d时Fe-氢酶基因条带数增加,10 d时Fe-氢酶基因条带数减少,20-40 d时Fe-氢酶基因条带数再次增加并保持稳定,对应的含Fe-氢酶微生物的群落结构随着培养过程的进行发生了显著变化。主成分分析表明,1 d与20 d、5 d与10 d、30 d与40 d的含Fe-氢酶微生物群落结构相似性较高,随着培养时间的增长含Fe-氢酶微生物群落结构趋于稳定。α多样性指数分析显示,1 d和10 d的丰富度指数(R)、Shannon-Weaver指数(H’)、Simpson指数(DS)与其他时间点相比较小,说明这2个时间点的Fe-氢酶多样性低,对应的含Fe-氢酶微生物群落结构较为简单,表明淹水培养过程中微生物的群落结构发生了演替变化。变性梯度凝胶电泳指纹图谱15个Fe-氢酶的优势条带测序后构建的系统发育树表明,培养前期的优势条带与梭菌属的Fe-氢酶关系较近,培养后期出现了非梭菌属的Fe-氢酶。淹水培养过程中Fe-氢酶基因的拷贝数在106/g干土的水平,占细菌的相对比例为1‰–2‰。【结论】水稻土淹水培养过程中发现了4种梭菌属Fe-氢酶和3种非梭菌属Fe-氢酶基因,对应的含Fe-氢酶微生物在培养前期群落结构发生显著演替变化,培养后期趋于稳定。  相似文献   

7.
淹水时间对水稻土中地杆菌科群落结构及丰度的影响   总被引:2,自引:0,他引:2  
【目的】通过模拟水稻土淹水过程,探讨地杆菌科(Geobacteraceae)群落结构和相对丰度随淹水时间的动态变化特征,揭示其群落结构和相对丰度变化与微生物Fe(Ⅲ)还原的内在联系。【方法】提取水稻土淹水培养1 h、1 d、5 d、10 d、20 d和30 d后的微生物总DNA,构建地杆菌科16S rDNA克隆文库,采用PCR-RFLP方法分析地杆菌科的群落结构和多样性变化特征,通过Real-time PCR技术测定地杆菌科相对丰度的动态变化。采用厌氧泥浆培养方法,测定水稻土中Fe(Ⅱ)产生量变化。【结果】供试水稻土中,微生物Fe(Ⅲ)还原过程在淹水培养初期变化明显,培养20 d后达到稳定期,最大铁还原潜势为10.16 mg/g,最大反应速率为1.064 mg/(g.d),最大反应速率对应的时间为4.84 d。α多样性指数显示,水稻土中地杆菌科的多样性随淹水时间延长呈现波动性变化,淹水5 d和20 d处理出现2个峰值,而淹水10 d和30 d处理的多样性明显减小。β多样性指数表明淹水过程中群落结构存在明显差异。不同淹水时间共产生了10种地杆菌科优势类型,分别属于Clade 1和Clade 2。Real-time PCR结果表明,地杆菌科与总细菌16S rDNA丰度的比值在淹水培养1 d时最小(1.20%),而20 d时达到最大值(4.54%)。【结论】淹水培养的水稻土中,地杆菌科微生物的多样性和相对丰度的动态变化与微生物Fe(Ⅲ)还原过程密切相关。  相似文献   

8.
云南松林次生演替阶段土壤细菌群落的变化   总被引:1,自引:0,他引:1  
土壤细菌多样性是维持森林生态系统功能的关键因子,森林演替是影响其动态变化的重要因素。研究云南松林不同演替阶段土壤细菌群落结构及其多样性的变化规律,有助于深入理解森林生态系统恢复过程的驱动机制。本研究以云南省永仁县皆伐后形成的针叶林、针阔混交林和常绿阔叶林为对象,基于Illumina Hiseq高通量测序技术,分析森林演替过程中土壤细菌群落组成、结构、多样性及其影响因子的变化。结果表明: 土壤细菌的种群分类单元、Ace指数、Chao1指数和Shannon指数均随着演替进行呈减少趋势,演替早期阶段土壤的细菌总数、菌群丰富度及复杂程度最高。不同演替阶段细菌群落结构存在显著差异,其中,针阔混交林的差异最大,变形菌门和酸杆菌门为各演替序列共有的优势类群,放线菌门、绿弯菌门和Patescibacteria是演替早期的优势类群,且随着演替进行呈现减少趋势;变形菌门和WPS-2相对多度随演替进行呈增加趋势。土壤pH和乔木层物种丰富度是驱动次生演替过程中土壤细菌群落组成变化的关键因子。随着演替的进行,土壤细菌多样性减少,群落组成差异加大。  相似文献   

9.
屠腾  李蕾  毛冠男  王莹莹 《生态学报》2012,32(11):3505-3515
松花江是我国东北地区的重要河流之一,为加强对其水环境微生物状况的了解,对松花江干流部分地区的微生物数量和多样性进行了分析。应用传统平板培养法和流式细胞技术测定水样中的细菌数;直接提取样品中的总DNA,以巢式PCR(Polymerase Chain Reaction)扩增细菌16SrDNA片段,应用聚丙烯酰胺凝胶电泳(Denaturing Gradient Gel Electrophoresis,DGGE)技术对扩增片段进行分离,研究水样和底泥样品细菌的种群多样性。实验结果显示,pH值为影响水环境中微生物总细胞数量的主要因素。水样中细菌群落多样性主要根据上下游分区,分区点在哈尔滨段附近,而底泥中细菌群落多样性的影响因素呈多样化,没有显示出较为明确的分区特征。  相似文献   

10.
为了优化沼气池产气效率和开展污泥微生物多样性研究,通过对PCR-DGGE条件的优化,建立了农村户用沼气池污泥微生物16S r DNA V3区DGGE分析技术,通过DGGE技术分析了沼气池污泥中细菌和古细菌微生物多样性随沼气池深度的变化规律。同时通过构建污泥样品mcr A功能基因克隆文库,应用RFLP技术,开展了农村户用沼气池污泥样品中与次级代谢产物相关基因的功能基因多样性研究。结果显示,农村户用沼气池污泥中含有丰富的微生物资源,其中细菌群落受污泥深度因素影响小,而浅层污泥中古细菌群落与深层污泥中古菌群落却存在明显差异。所采集的沼气池污泥中含有较为丰富的产甲烷菌资源,其中可能存在类似功能或产生类似代谢物质的产甲烷菌。该结果为进一步优化群落结构、筛选功能基因提供了科学依据。  相似文献   

11.
To study the structure of microbial communities in the biological hydrogen production reactor and determine the ecological function of hydrogen producing bacteria, anaerobic sludge was obtained from the continuous stirred tank reactor (CSTR) in different periods of time, and the diversity and dynamics of microbial communities were investigated by denaturing gradient gel electrophoresis (DGGE). The results of DGGE demonstrated that an obvious shift of microbial population happened from the beginning of star-up to the 28th day, and the ethanol type fermentation was established. After 28 days the structure of microbial community became stable, and the climax community was formed. Comparative analysis of 16S rDNA sequences from reamplifying and sequencing the prominent bands indicated that the dominant population belonged to low G+C Gram-positive bacteria (Clostridium sp. andEthanologenbacterium sp.), β-proteobacteria (Acidovorax sp.), γ-proteobacteria (Kluyvera sp.), Bacteroides (uncultured bacterium SJA-168), and Spirochaetes (uncultured eubacterium E1-K13), respectively. The hydrogen production rate increased obviously with the increase ofEthanologenbacterium sp.,Clostridium sp. and uncultured Spirochaetes after 21 days, meanwhile the succession of ethanol type fermentation was formed. Throughout the succession the microbial diversity increased however it decreased after 21 days. Some types ofClostridium sp.Acidovorax sp.,Kluyvera sp., and Bacteroides were dominant populations during all periods of time. These special populations were essential for the construction of climax community. Hydrogen production efficiency was dependent on both hydrogen producing bacteria and other populations. It implied that the cometabolism of microbial community played a great role of biohydrogen production in the reactors.  相似文献   

12.
Biohydrogen production has been concerned ex-tremely as a new technology of energy resource pro-duction by many scientists[1—4]. Enhancement of hy-drogen production efficiency and cutting down the operating cost are very important problems, which are the limiting factors for the industrialization of hydro-gen production process. The fermentation hydrogen production technology offers a new method to resolve these difficulties[5—8]. Compared with photosynthetic hydrogen production possesses, f…  相似文献   

13.
Total DNA was directly extracted from environmental samples and amplified with polymerase chain reaction (PCR) technique. The PCR products were fingerprinted via denaturing gradient gel electrophoresis (DGGE). Significant differences were observed in the microbial community structures between traditional treatment process and chem-bioflocculation process. The microbial community structure shift at different sampling locations in chem-bioflocculation process and on two typical operational conditions was studied. 16S rDNA V3 regions of some dominant species were sequenced and the species were identified. The microbial communities were stable in both the chem-bioflocculation process and the activated sludge process under various experimental conditions presented in this work. The attached growth treatment process was less stable when operational conditions changed.  相似文献   

14.
The structures of microbial communities in lab-scale upflow anaerobic sludge blanket (UASB) reactors for treating municipal wastewater with different ratios of COD soluble/COD total were studied using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes.The microbial structure of the inoculum sludge obtained from a full-scale UASB reactor of treating potato processing wastewater was compared with the structures of sludges collected from three lab-scale UASB reactors after eight months feeding with raw municipal wastewater, with CEPS (chemically enhanced primary sedimentation) pretreated municipal wastewater, and with a synthetic municipal sewage, respectively. Computer-aided numerical analysis of the DGGE fingerprints showed that the bacterial community underwent major changes. The sludges for treating raw and CEPS pretreated wastewater had very similar bacterial and archaeal communities (82%and 96% similarity) but were different from that for treating the synthetic sewage. Hence, despite similar % COD in the particulate form in the synthetic and the real wastewater, the two wastewaters were selected for different microbial communities. Prominent DGGE bands of Bacteria and Archaea were purified and sequenced. The 16S rRNA gene sequences of the dominant archaeal bands found in the inoculum, and UASB sludge fed with raw sewage, CEPS pretreated wastewater, and synthetic sewage were closely associated with Methanosaeta concilii. In the UASB sludge fed with synthetic sewage, another dominant band associated with an uncultured archaeon 39-2 was found together with M. concilii.  相似文献   

15.
The structures of microbial communities in lab-scale upflow anaerobic sludge blanket (UASB) reactors for treating municipal wastewater with different ratios of COD soluble/ COD total were studied using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The microbial structure of the inoculum sludge obtained from a full-scale UASB reactor of treating potato processing wastewater was compared with the structures of sludges collected from three lab-scale UASB reactors after eight months feeding with raw municipal wastewater, with CEPS (chemically enhanced primary sedimentation) pretreated municipal wastewater, and with a synthetic municipal sewage, respectively. Computer-aided numerical analysis of the DGGE fingerprints showed that the bacterial community underwent major changes. The sludges for treating raw and CEPS pretreated wastewater had very similar bacterial and archaeal communities (82% and 96% similarity) but were different from that for treating the synthetic sewage. Hence, despite  相似文献   

16.
Two different strategies for molecular analysis of bacterial diversity, 16S rDNA cloning and denaturing gradient gel electrophoresis (DGGE), were combined into a single protocol that took advantage of the best attributes of each: the ability of cloning to package DNA sequence information and the ability of DGGE to display a community profile. In this combined protocol, polymerase chain reaction products from environmental DNA were cloned, and then DGGE was used to screen the clone libraries. Both individual clones and pools of randomly selected clones were analyzed by DGGE, and these migration patterns were compared to the conventional DGGE profile produced directly from environmental DNA. For two simple bacterial communities (biofilm from a humics-fed laboratory reactor and planktonic bacteria filtered from an urban freshwater pond), pools of 35–50 clones produced DGGE profiles that contained most of the bands visible in the conventional DGGE profiles, indicating that the clone pools were adequate for identifying the dominant genotypes. However, DGGE profiles of two different pools of 50 clones from a lawn soil clone library were distinctly different from each other and from the conventional DGGE profile, indicating that this small number of clones poorly represented the bacterial diversity in soil. Individual clones with the same apparent DGGE mobility as prominent bands in the humics reactor community profiles were sequenced from the clone plasmid DNA rather than from bands excised from the gel. Because a longer fragment was cloned (∼1500 bp) than was actually analyzed in DGGE (∼350 bp), far more sequence information was available using this approach that could have been recovered from an excised gel band. This clone/DGGE protocol permitted rapid analysis of the microbial diversity in the two moderately complex systems, but was limited in its ability to represent the diversity in the soil microbial community. Nonetheless, clone/DGGE is a promising strategy for fractionating diverse microbial communities into manageable subsets consisting of small pools of clones.  相似文献   

17.
18.
The community structure of bacterioplankton in meromictic Lake Saelenvannet was examined by PCR amplification of the V3 region of 16S rRNA from microbial communities recovered from various depths in the water column. Two different primer sets were used, one for amplification of DNA from the domain Bacteria and another specific for DNA from the domain Archaea. Amplified DNA fragments were resolved by denaturing gradient gel electrophoresis (DGGE), and the resulting profiles were reproducible and specific for the communities from different depths. Bacterial diversity estimated from the number and intensity of specific fragments in DGGE profiles decreased with depth. The reverse was true for the Archaea, with the diversity increasing with depth. Hybridization of DGGE profiles with oligonucleotide probes specific for phylogenetic groups of microorganisms showed the presence of both sulfate-reducing bacteria and methanogens throughout the water column, but they appeared to be most abundant below the chemocline. Several dominant fragments in the DGGE profiles were excised and sequenced. Among the dominant populations were representatives related to Chlorobium phaeovibrioides, chloroplasts from eukaryotic algae, and unidentified Archaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号