首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We tested whether proteome reference maps established for one species can be used for cross-species protein identification by comparing two-dimensional protein gel patterns and protein identification data of two closely related bacterial strains and four plant species. First, proteome profiles of two strains of the fully sequenced bacterium Sinorhizobium meliloti were compared as an example of close relatedness, high reproducibility and sequence availability. Secondly, the proteome profiles of three legumes (Medicago truncatula, Melilotus alba and Trifolium subterraneum), and the nonlegume rice (Oryza sativa) were analysed to test cross-species similarities. In general, we found stronger similarities in gel patterns of the arrayed proteins between the two bacterial strains and between the plant species than could be expected from the sequence similarities. However, protein identity could not be concluded from their gel position, not even when comparing strains of the same species. Surprisingly, in the bacterial strains peptide mass fingerprinting was more reliable for species-specific protein identification than N-terminal sequencing. While peptide masses were found to be unreliable for cross-species protein identification, we present useful criteria to determine confident matching against species-specific expressed sequence tag databases. In conclusion, we present evidence that cautions the use of proteome reference maps and peptide mass fingerprinting for cross-species protein identification.  相似文献   

2.
TRIzol is used for RNA isolation but also permits protein recovery. We investigated whether proteins prepared with TRIzol were suitable for two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization mass spectrometry. Proteins from TRIzol-treated SH-SY5Y cells produced 2-DE spot patterns similar to those from an equivalent untreated sample. Subsequent identification of TRIzol-treated proteins using peptide mass fingerprinting was successful. TRIzol exposure altered neither the mass of myoglobin extracted from sodium dodecyl sulfate (SDS) gels nor the masses of myoglobin peptides produced by in-gel trypsin digestion. These findings suggest that proteins isolated with TRIzol remain amenable to proteomic analyses.  相似文献   

3.
We present here a new approach that enabled the identification of a new protein from a bacterial strain with unknown genomic background using a combination of inverted PCR with degenerate primers derived from N-terminal protein sequences and high resolution peptide mass determination of proteolytic digests from two-dimensional electrophoretic separation. Proteins of the sulfate-reducing bacterium Desulfotignum phosphitoxidans specifically induced in the presence of phosphite were separated by two-dimensional gel electrophoresis as a series of apparent soluble and membrane-bound isoforms with molecular masses of approximately 35 kDa. Inverted PCR based on N-terminal sequences and high resolution peptide mass fingerprinting by Fourier transform-ion cyclotron resonance mass spectrometry provided the identification of a new NAD(P) epimerase/dehydratase by specific assignment of peptide masses to a single ORF, excluding other possible ORF candidates. The protein identification was ascertained by chromatographic separation and sequencing of internal proteolytic peptides. Metal ion affinity isolation of tryptic peptides and high resolution mass spectrometry provided the identification of five phosphorylations identified in the domains 23-47 and 91-118 of the protein. In agreement with the phosphorylations identified, direct molecular weight determination of the soluble protein eluted from the two-dimensional gels by mass spectrometry provided a molecular mass of 35,400 Da, which is consistent with an average degree of three phosphorylations.  相似文献   

4.
Proteome analysis of Jurkat T cells was performed in order to identify proteins that are modified during apoptosis. Subtractive analysis of two-dimensional gel patterns of apoptotic and nonapoptotic cells revealed differences in 45 protein spots. 37 protein spots of 21 different proteins were identified by peptide mass fingerprinting using matrix-assisted laser desorption/ionization mass spectrometry. The hnRNPs A0, A2/B1, A3, K, and R; the splicing factors p54(nrb), SRp30c, ASF-2, and KH-type splicing regulatory protein (FUSE-binding protein 2); and alpha NAC, NS1-associated protein 1, and poly(A)-binding protein 4 were hitherto unknown to be involved in apoptosis. The putative cleavage sites of the majority of the proteins could be calculated by the molecular masses and isoelectric points in the two-dimensional electrophoresis gel, the peptide mass fingerprints, and after translation by treatment with recombinant caspase-3. Remarkably, 15 of the 21 identified proteins contained the RNP or KH motif, the best characterized RNA-binding motifs.  相似文献   

5.
The use of 1 N HCl for extraction of small, acid-soluble proteins (SASP) from different Bacillus spore species was examined. The extracts were analyzed by high-performance liquid chromatography and matrix-assisted laser desorption mass spectrometry and were found to be both qualitatively and quantitatively superior to extraction by acetonitrile-5% trifluoroacetic acid (70:30, vol/vol). Both major and minor alpha/beta- and gamma-type SASP were characterized by their molecular masses or tryptic peptide maps and by searches of both protein and unannotated genome databases. For all but 1 pair (B. cereus T and B. thuringiensis subsp. Kurstaki) among the 11 variants studied the suites of SASP masses are distinctive, consistent with the use of these proteins as potential biomarkers for spore identification by mass spectrometry.  相似文献   

6.
Peptide mass fingerprinting, regardless of becoming complementary to tandem mass spectrometry for protein identification, is still the subject of in-depth study because of its higher sample throughput, higher level of specificity for single peptides and lower level of sensitivity to unexpected post-translational modifications compared with tandem mass spectrometry. In this study, we propose, implement and evaluate a uniform approach using support vector machines to incorporate individual concepts and conclusions for accurate PMF. We focus on the inherent attributes and critical issues of the theoretical spectrum (peptides), the experimental spectrum (peaks) and spectrum (masses) alignment. Eighty-one feature-matching patterns derived from cleavage type, uniqueness and variable masses of theoretical peptides together with the intensity rank of experimental peaks were proposed to characterize the matching profile of the peptide mass fingerprinting procedure. We developed a new strategy including the participation of matched peak intensity redistribution to handle shared peak intensities and 440 parameters were generated to digitalize each feature-matching pattern. A high performance for an evaluation data set of 137 items was finally achieved by the optimal multi-criteria support vector machines approach, with 491 final features out of a feature vector of 35,640 normalized features through cross training and validating a publicly available "gold standard" peptide mass fingerprinting data set of 1733 items. Compared with the Mascot, MS-Fit, ProFound and Aldente algorithms commonly used for MS-based protein identification, the feature-matching patterns algorithm has a greater ability to clearly separate correct identifications and random matches with the highest values for sensitivity (82%), precision (97%) and F1-measure (89%) of protein identification. Several conclusions reached via this research make general contributions to MS-based protein identification. Firstly, inherent attributes showed comparable or even greater robustness than other explicit. As an inherent attribute of an experimental spectrum, peak intensity should receive considerable attention during protein identification. Secondly, alignment between intense experimental peaks and properly digested, unique or non-modified theoretical peptides is very likely to occur in positive peptide mass fingerprinting. Finally, normalization by several types of harmonic factors, including missed cleavages and mass modification, can make important contributions to the performance of the procedure.  相似文献   

7.
Lee K  Bae D  Lim D 《Molecules and cells》2002,13(2):175-184
Protein identification by peptide mass fingerprinting, using the matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), plays a major role in large proteome projects. In order to develop a simple and reliable method for protein identification by MALDI-TOF MS, we compared and evaluated the major steps in peptide mass fingerprinting. We found that the removal of excess enzyme from the in-gel digestion usually gave a few more peptide peaks, which were important for the identification of some proteins. Internal calibration always gave better results. However, for a large number of samples, two step calibrations (i.e. database search with peptide mass from external calibration, then the use of peptide masses from the search result as internal calibrants) were useful and convenient. From the evaluation and combination of steps that were already developed by others, we established a single overall procedure for peptide identification from a polyacrylamide gel.  相似文献   

8.
Ding Q  Xiao L  Xiong S  Jia Y  Que H  Guo Y  Liu S 《Proteomics》2003,3(7):1313-1317
Unmatched masses are often observed in the experimental peptide mass spectra when database searching is performed with the ProFound program. Comparison between theoretical and experimental mass spectra of standard proteins shows that contamination accounts for most of the unmatched masses. In this retrospective analysis, the top 100 most probable contaminating masses, as listed in order of their probability, are statistically filtered out from 118 different experimental peptide mass fingerprinting (PMF) maps. Most of the interfering masses originate from trypsin autolysis and human keratins. Subtraction of known contaminants from raw data and using cleaner masses for searching can enhance protein identification by PMF.  相似文献   

9.
Mass spectrometry using matrix-assisted laser desorption/ionization (MALDI) is a widespread technique for various types of proteomic analysis. In the identification of proteins using peptide mass fingerprinting, samples are enzymatically digested and resolved into a number of peptides, whose masses are determined and matched with a sequence data-base. However, the presence inside the cell of several splicing variants, protein isoforms, or fusion proteins gives rise to a complex picture, demanding more complete analysis. Moreover, the study of species with yet uncharacterized genomes or the investigation of post-translational modifications are not possible with classical mass fingerprinting, and require specific and accurate de novo sequencing. In the last several years, much effort has been made to improve the performance of peptide sequencing with MALDI. Here we present applications using a fast and robust chemical modification of peptides for improved de novo sequencing. Post-source decay of derivatized peptides generates at the same time peaks with high intensity and simple spectra, leading to a very easy and clear sequence determination.  相似文献   

10.
Zolla L  Timperio AM 《Proteins》2000,41(3):398-406
In higher plants, both photosystem I (PSI) and II (PSII) consist of membrane-embedded proteins that contain more than one transmembrane alpha helix. PSI is a multiprotein complex consisting of a core complex of thirteen proteins surrounded by four different types of light harvesting antenna proteins. Up to now, the protein components of both photosystems have been characterized by SDS-PAGE and/or immunoblotting and, therefore, identification made only on the basis of electrophoretic mobility, which is sometimes not sufficient to discriminate between individual membrane proteins. This is also complicated by the fact that some proteins, such as the antenna proteins, have almost identical molecular mass and amino acid sequence, making it difficult to identify and ascertain the relative stoichiometry of the proteins. In this paper, we report the complete resolution of the antenna proteins and most of the core components of PSI from spinach, together with the identification of proteins by molecular mass, successfully deduced by the combined use of HPLC coupled on-line with a mass spectrometer equipped with an electrospray ion source (ESI-MS). The proposed RP-HPLC-ESI-MS method holds several advantages over SDS-PAGE, including better protein separation, especially for antenna proteins, mass accuracy, speed, efficiency, and the potential to reveal isomeric forms. Moreover, the molecular masses determined by HPLC-ESI-MS are in good agreement with the molecular masses of the individual components calculated on the basis of their nucleotide-derived amino acid sequences, indicating an absence of post-translational modifications in these proteins. It follows that if the method proposed is useful for these highly hydrophobic proteins, it may be of general use for any membrane proteins, where the presence of detergent for solubilization may compromise their characterization.  相似文献   

11.
【目的】基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)法基于微生物的特征蛋白指纹图谱鉴定菌种,本研究利用基因组学和MALDI-TOFMS技术鉴定放线菌纲细菌的核糖体蛋白质标志物。【方法】从MALDI-TOF MS图谱数据库选取放线菌纲代表菌种,在基因组数据库检索目标菌种,获取目标菌株或其参比菌株的核糖体蛋白质序列,计算获得分子质量理论值,用于注释目标菌株MALDI-TOFMS指纹图谱中的核糖体蛋白质信号。【结果】从8目,24科,53属,114种,142株放线菌的MALDI-TOFMS图谱中总共注释出31种核糖体蛋白质。各菌株的指纹图谱中核糖体蛋白质信号数量差异显著。各种核糖体蛋白质信号的注释次数差异显著。总共15种核糖体蛋白质在超过半数图谱中得到注释,注释次数最高的是核糖体大亚基蛋白质L36。【结论】本研究找到了放线菌纲细菌MALDI-TOF MS图谱中常见的15种核糖体蛋白质信号,可为通过识别核糖体蛋白质的质谱特征峰鉴定放线菌的方法建立提供依据。  相似文献   

12.
Valot B  Gianinazzi S  Eliane DG 《Phytochemistry》2004,65(12):1721-1732
Since the last decade, Medicago truncatula has emerged as one of the model plants particularly investigated in the field of plant-microbe interactions. Several genetic and molecular approaches including proteomics have been developed to increase knowledge about this plant species. To complement the proteomic data, which have mainly focused on the total root proteins from M. truncatula, we carried out a sub-cellular approach to gain access to the total membrane-associated proteins. Following the setting up of the purification process, microsomal proteins were separated on 2-DE. Ninety-six out of the 440 well-resolved proteins were identified by MALDI-TOF peptide mass fingerprinting. A high percent (83%) of successful protein identification was obtained when using M. truncatula clustered EST database for queries. During the purification process, the enrichment in membrane-associated proteins was monitored on 2-D gels. The membrane location of microsomal proteins was further confirmed using PMF identification. This study reports a fractionation process for characterizing microsomal root proteins of M. truncatula, which could be an interesting tool for investigating the molecular mechanisms involved in root symbioses.  相似文献   

13.
Because of their complexity, the separation of intact proteins from complex mixtures is an important step to comparative proteomics and the identification and characterization of the proteins by mass spectrometry (MS). In the study reported, we evaluated the use of nonporous-reversed-phase (np-RP)-HPLC for intact protein separation prior to MS analyses. The separation system was characterized and compared to 1D-SDS-PAGE electrophoresis in terms of resolution and sensitivity. We demonstrate that np-RP-HPLC protein separation is highly reproducible and provides intact protein fractions which can be directly analyzed by MALDI-TOF-MS for intact molecular weight determination. An in-well digestion protocol was developed, allowing for rapid protein identification by peptide mass fingerprinting (PMF) and resulted in comparable or improved peptide recovery compared with in-gel digestion. The np-RP sensitivity of detection by UV absorbance at 214 nm for intact proteins was at the low ng level and the sensitivity of peptide analysis by MALDI-TOF-MS was in the 10-50 fmol level. A membrane protein fraction was characterized to demonstrate application of this methodology. Among the identified proteins, multiple forms of vimentin were observed. Overall, we demonstrate that np-RP-HPLC followed by MALDI-TOF-MS allows for rapid, sensitive, and reproducible protein fractionation and very specific protein characterization by integration of PMF analysis with MS intact molecular weight information.  相似文献   

14.
A new matrix-assisted laser desorption/ionization time of flight mass spectrometer (MALDI-ToF MS), developed specifically for the identification and characterization of proteins and peptides in proteomic investigations, is described. The mass spectrometer which can be integrated with the 2-D gel electrophoresis workflow is a bench-top instrument, enabling rapid, reliable and unattended protein identification in low-, as well as high-throughput proteomics applications. To obtain precise information on peptide sequences, the instrument utilizes a timed ion gate and a unique quadratic field reflectron (Z2 technology), allowing single-run, post-source decay (PSD) of selected peptides. In this study, the performance of the instrument in reflectron, PSD and linear mode, respectively, was investigated. The results showed that the limit of detection for a single peptide in reflectron mode was 125 amol with a signal to noise ratio exceeding 20. Average mass resolution for peptides larger than 2000 u was around 13,000 full width, half maximum (FWHM). The limit for protein identification during peptide mass fingerprinting (PMF) was 500 amol with a sequence coverage of 18%. Mass error during PMF analysis was less than 15 ppm for 17 out of 25 (68%) identified peptides. In PSD mode, a complete series of y-ions of a CAF-derivatized peptide could be obtained from 3.75 fmol of material. The average mass error of PSD-generated fragments was less than 0.14 u. Finally, in linear mode, intact proteins with molecular masses greater than 300,000 u were detected with mass errors below 0.2%.  相似文献   

15.
Li C  Tan YX  Zhou H  Ding SJ  Li SJ  Ma DJ  Man XB  Hong Y  Zhang L  Li L  Xia QC  Wu JR  Wang HY  Zeng R 《Proteomics》2005,5(4):1125-1139
Hepatocellular carcinoma (HCC) is a malignancy of both underdeveloped and developing countries. Proteomes of ten pairs of clinical hepatitis B virus associated HCC tissue samples were obtained by high resolution two-dimensional gel electrophoresis. Comprehensive analyses of proteins associated with B-type HCC were focused on total differentially expressed proteins (> or = two-fold increase or decrease, Student's t-test, p < 0.05) from one pair of samples. Protein identification was done by peptide mass fingerprinting with matrix assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Comparative analyses of proteins associated with B-type HCC included repeat statistics in ten cases. A total of 100 protein spots, corresponding to 80 different gene products, were identified. Proteins whose expression levels were different by more than 2-fold in at least 50% of the cases (five of ten cases) were further analyzed and 45 proteins were selected out as candidates for HCC-associated proteins. Western blotting further validated up-regulated expressions of two candidate proteins in tumor tissues: proliferating cell antigen and stathmin 1. This comprehensive and comparative analyses of proteins associated with B-type HCC could provide useful molecular markers for diagnostics and prognostics and for therapeutic targets. The physiological significance of the differential expressions for several candidate proteins are discussed.  相似文献   

16.
Peptides, proteins, single-stranded oligonucleotides, and double-stranded DNA fragments were separated with high resolution in micropellicular, monolithic capillary columns prepared by in situ radical copolymerization of styrene and divinylbenzene. Miniaturized chromatography both in the reversed-phase and the ion-pair reversed-phase mode could be realized in the same capillary column because of the nonpolar character of the poly-(styrene/divinylbenzene) stationary phase. The high chromatographic performance of the monolithic stationary phase facilitated the generation of peak capacities for the biopolymers in the range of 50-140 within 10 min under gradient elution conditions. Employing volatile mobile phase components, separations in the two chromatographic separation modes were on-line hyphenated to electrospray ionization (tandem) mass spectrometry, which yielded intact accurate molecular masses as well as sequence information derived from collision-induced fragmentation. The inaccuracy of mass determination in a quadrupole ion trap mass spectrometer was in the range of 0.01-0.02% for proteins up to a molecular mass of 20000, and 0.02-0.12% for DNA fragments up to a molecular mass of 310000. High-performance liquid chromatography-electrospray ionization mass spectrometry utilizing monolithic capillary columns was applied to the identification of proteins by peptide mass fingerprinting, tandem mass spectrometric sequencing, or intact molecular mass determination, as well as to the accurate sizing of double-stranded DNA fragments ranging in size from 50 to 500 base pairs, and to the detection of sequence variations in DNA fragments amplified by the polymerase chain reaction.  相似文献   

17.
The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction.  相似文献   

18.
Small hepatocytes are cells that express characteristic phenotypes such as a high growth potential and differentiation capacity. In order to identify rat-small-hepatocyte specific proteins, we separated the cellular proteins of isolated small and parenchymal hepatocytes by 2D polyacrylamide gel electrophoresis. Comparison of their profiles revealed a protein with a molecular mass of 37 kDa in the small hepatocytes that was not present in the parenchymal hepatocytes. Proteolytic peptide mass fingerprinting was used to identify the protein and it was found to be annexin III. The validity of the identification was confirmed by Western blot analysis with anti-annexin III antibody.  相似文献   

19.
A lipase-inhibiting protein was isolated from lipoxygenase (LOX)-deficient soybean seeds. The molecular mass of the protein was 56.0-kDa and the N-terminal amino acid was blocked. The protein was identified by peptide mass fingerprinting in combination with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. The masses of the lysyl endopeptidase-digested peptides of the 56.0-kDa inhibiting protein were almost identical to the calculated masses of the theoretically predicted lysyl endopeptidase-treated peptides of beta-amylase from soybean seed. In a previous paper (Biosci. Biotechnol. Biochem., 62, 1498-1503, 1998), we reported that LOX-1, an isozyme of soybean seed LOX, inhibited hydrolysis of soybean oil by pancreatic lipase. Purified beta-amylase also inhibited lipase activity, although the magnitude of inhibition was weaker than that by LOX-1. Thus, there are at least two lipase-inhibiting proteins, one is a LOX and the other is a beta-amylase, in soybean seed.  相似文献   

20.
Analysing proteomic data   总被引:5,自引:0,他引:5  
The rapid growth of proteomics has been made possible by the development of reproducible 2D gels and biological mass spectrometry. However, despite technical improvements 2D gels are still less than perfectly reproducible and gels have to be aligned so spots for identical proteins appear in the same place. Gels can be warped by a variety of techniques to make them concordant. When gels are manipulated to improve registration, information is lost, so direct methods for gel registration which make use of all available data for spot matching are preferable to indirect ones. In order to identify proteins from gel spots a property or combination of properties that are unique to that protein are required. These can then be used to search databases for possible matches. Molecular mass, pI, amino acid composition and short sequence tags can all be used in database searches. Currently the method of choice for protein identification is mass spectrometry. Proteins are eluted from the gels and cleaved with specific endoproteases to produce a series of peptides of different molecular mass. In peptide mass fingerprinting, the peptide profile of the unknown protein is compared with theoretical peptide libraries generated from sequences in the different databases. Tandem mass spectroscopy (MS/MS) generates short amino acid sequence tags for the individual peptides. These partial sequences combined with the original peptide masses are then used for database searching, greatly improving specificity. Increasingly protein identification from MS/MS data is being fully or partially automated. When working with organisms, which do not have sequenced genomes (the case with most helminths), protein identification by database searching becomes problematical. A number of approaches to cross species protein identification have been suggested, but if the organism being studied is only distantly related to any organism with a sequenced genome then the likelihood of protein identification remains small. The dynamic nature of the proteome means that there really is no such thing as a single representative proteome and a complete set of metadata (data about the data) is going to be required if the full potential of database mining is to be realised in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号