首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Distribution and modulation of a human leukemia-associated antigen (CALLA)   总被引:6,自引:0,他引:6  
CALLA is a 100,000-dalton surface glycoprotein expressed by malignant cells of patients with clinically important subtypes of acute leukemia. Incubation of human leukemic cells expressing CALLA with specific monoclonal antibody (J5) at 37 degrees C causes rapid and selective internalization and degradation of this antigen (antigenic modulation). In these studies we show that CALLA-specific monoclonal antibodies also identify a cell surface glycoprotein having a m. w. of approximately 100,000 on 2 to 6% of nonmyeloid nucleated cells of normal adult bone marrow, on normal fibroblasts in tissue culture, and on cells of several nonhematopoietic human tumor cell lines. J5 antibody similarly modulates the surface expression of CALLA on nonleukemic cell populations, although the extent of modulation at a given concentration of antibody varied considerably. Modulation was almost complete for CALLA on cells of normal bone marrow, but was highly variable for cells of nonhematopoietic cell lines, possibly reflecting variability in antibody access to surface antigen. Using fluoresceinated or iodinated J5 antibody to modulate expression of CALLA on cells of leukemic cell lines, we show that antibody-antigen complexes undergo a temperature-dependent redistribution on the cell surface during modulation to form microaggregates. Antibody as well as antigen is then internalized. Studies of [35S]methionine-labeled cells indicate that synthesis of CALLA continues despite modulation of its surface expression by specific antibody, implying that the presence of CALLA on the cell surface reflects a dynamic equilibrium between the processes of surface expression of newly synthesized glycoprotein and its spontaneous and antibody-mediated clearance. The implications of these observations for immunotherapy are discussed.  相似文献   

2.
The dynamics of the T cell antigen receptor on a murine antigen specific T cell hybridoma have been analyzed using a monoclonal anti-receptor antibody. When this antibody, A2B4-2, is bound to surface receptors, no internalization is seen at 4 degrees C. Upon warming to 37 degrees C, between 20 and 30% of the antibody molecules are internalized over 20-30 min as measured by sensitivity to external acid. This level of internalization is identical if monovalent Fab fragments are used. In contrast, cross-linking of the anti-receptor antibody with a second antibody leads to rapid internalization of 100% of prebound surface A2B4-2. Phorbol 12-myristate 13-acetate (PMA) leads to the rapid internalization of up to 65% of the surface A2B4-2 or A2B4-2 Fab fragments. This effect requires protein kinase C and can be completely inhibited by depleting this kinase from the cells by long term treatment with high doses of PMA. Pretreatment of the T cells with PMA leads to a 40-50% drop in surface T cell antigen receptor expression. Despite the loss of surface receptors, the uptake of A2B4-2 in PMA-treated cells at 37 degrees C is identical to that seen in control cells. The total uptake of A2B4-2 at 37 degrees C is 25-30% greater than the number of surface receptors in control cells and about 100-150% greater than the number of surface receptors in PMA-treated cells. At steady state the percentage of total A2B4-2 on the cell surface is 75% for control cells and 38% for PMA-treated cells. The good agreement of these numbers with the percent internalization of a cohort of surface receptors suggests that all receptors are constantly cycling. The effect of PMA is to alter the kinetic parameters of this cycling, thus changing the steady state distribution of receptors between the plasma membrane and internal, presumably endosomal compartments. Measurement of initial rates of internalization suggests that the PMA effect can be largely explained by an increase in the internalization rate constant.  相似文献   

3.
PMA induces the ligand-independent internalization of CR1 on human neutrophils   总被引:17,自引:0,他引:17  
Phorbol myristate acetate (PMA) has been reported to confer on the C3b receptor (CR1) of neutrophils a capacity for phagocytosis of particles bearing C3b without the involvement of other membrane receptors. In the present study, we employed a monoclonal antibody, YZ-1, that is specific for CR1 to assess the effect of PMA on plasma membrane expression of CR1, total cellular CR1, and internalization of CR1 by neutrophils. PMA had a biphasic effect on the membrane expression of CR1 by purified neutrophils, with 4 ng/ml inducing a 60% increment in receptor expression, and higher concentrations causing up to a 70% decrement. PMA-dependent increases in CR1 expression were not accompanied by corresponding changes in total cellular CR1 and were preempted by treatment of cells with formyl-methionyl-leucyl-phenylalanine (FMLP). PMA-induced decreases in CR1 expression by neutrophils, as measured by binding of indirectly fluoresceinated or radiolabeled YZ-1, or of 125I-labeled dimeric C3b, were maximal with 20 to 30 ng/ml PMA, and occurred within 30 min of incubation at 37 degrees C. The PMA-dependent down-regulation of CR1 by neutrophils was not associated with a comparable decrease in total cellular CR1, and this response was observed to occur also with monocytes but not with peripheral blood lymphocytes. By tagging neutrophil CR1 with 125I-YZ-1 Fab and monitoring accessibility to Protease, intracellular CR1 (inaccessible) was discriminated from receptor on plasma membrane (accessible). Internalization of CR1 occurred within 5 min after addition of PMA to neutrophils, was dose dependent, and involved up to two-thirds of the tagged receptors. Therefore, PMA caused internalization of CR1 by neutrophils in the absence of ligand, indicating that this response was independent of a transmembrane signal generated by a C3b-CR1 interaction.  相似文献   

4.
The common acute lymphoblastic leukemia antigen (CALLA/CD10) is a nonintegral membrane glycoprotein expressed on normal and neoplastic cells of hematopoietic and nonhematopoietic origin. We have undertaken a series of experiments to examine 1) the structural homology between leukemia cell and neutrophil CALLA/CD10 and 2) the putative function CALLA/CD10 subserves to human neutrophils. Biosynthetic labeling, peptide mapping, and two-dimensional gel electrophoresis indicate that neutrophils synthesize and express a CALLA/CD10 molecule that is similar, but not identical, to leukemic cell CALLA/CD10. The level of CALLA/CD10 expression is similar on the two cell populations, and neutrophil CALLA/CD10 (like its leukemic cell counterpart) undergoes antigenic modulation. Finally, we report that neutrophil cell surface-bound anti-CALLA/CD10 monoclonal antibodies inhibit the chemotactic response to both N-Formyl-methionyl-leucyl-phenylalanine (F-mlp) and zymosan-activated sera (ZAS), but had no inhibitory effect on random migration, degranulation, or aggregation. The anti-class I monoclonal antibody W6/32 exerted a similar effect on chemotaxis. We conclude that CALLA/CD10 has no clearly defined role in neutrophil function but may play a role in some distal event in chemotaxis.  相似文献   

5.
Taking advantage of the recently demonstrated identity of common acute lymphoblastic leukemia antigen (CALLA) and neutral endopeptidase EC.24.11 (NEP) the presence of this ectoenzyme on lymphoid cells has been reassessed using highly sensitive assays (cleavage of [3H]-D-Ala2-leucine-enkephalin and binding of the inhibitor [3H]HACBO-Gly. NEP activity was found not only on already classified CALLA + ve cells but also on numerous cells (including mature B and polyclonal T cells) previously considered as CALLA-ve. This suggests that CALLA/NEP is expressed all along the differentiation pathway in B and T cell lineage. Moreover substantial ACE-like activity was also detected in three tested cells, all of the pre-B phenotype. The availability of specific inhibitors for these enzymes should help clarify their role in cell-differentiation.  相似文献   

6.
Both the J5 and BA-3 monoclonal antibodies are considered to be specific for epitopes on the common acute lymphoblastic leukemia antigen (CALLA). Flow-cytometric analyses of three cell lines and one normal bone marrow sample using these antibodies as CALLA markers demonstrated that J5-labeled cells were always brighter than those labeled with BA-3, and that the ratio of their fluorescence intensities varied widely in the different systems. Furthermore, one of the lines, RPMI 8226, while positive for J5, appeared to be negative when labeled with BA-3, except for a slight displacement of the fluorescence distribution relative to the control. A possible explanation for the observed results is that the BA-3 binding epitope or epitopes on CALLA may vary in their number and/or accessibility to the antibody. These observations suggest that the use of a single monoclonal antibody to detect a cell surface antigen may be misleading, particularly when a negative result is obtained.  相似文献   

7.
NEP/CALLA or CD10 is an endopeptidase (E.C. 3.4.24.11) that inactivates numerous neuropeptides, including dynorphin. Dynorphin is an endogenous opioid polypeptide that binds to kappa-opioid receptors with greatest affinity. R1.1 mouse thymoma cells highly express kappa-opioid receptors. In this study, on R1.1 cells, NEP activity was inhibited by kappa-opioid polypeptide dynorphin (10(-8)-10(-6) M) and by thiorphan (2 x 10(-4) M), a known inhibitor of NEP (30 min treatment). NEP inhibition by dynorphin was stronger than by thiorphan. A non-opioid opioid mechanism of action was mostly involved in this inhibition.  相似文献   

8.
Expression of the common acute lymphoblastic leukemia antigen (CALLA) on the surface of individual cells of the human lymphoblastoid lines CW678, Namalwa, and Nalm-6, and the distribution of the antigen epitopes within the cell populations have been determined quantitatively with the murine monoclonal anti-CALLA antibody J5. The distribution of CALLA epitopes in the cell populations was analyzed by indirect immunofluorescence measured by using flow cytometry. The average number of CALLA epitopes per cell were measured by two assays: in a direct assay by binding 125I-labeled antibody J5 to cells, and indirectly by binding 125I-labeled protein A from Staphylococcus aureus to J5-coated cells. On average, CW678, Namalwa, and Nalm-6 cells bore about 1 X 10(4), 6 X 10(4), and 8 X 10(4) CALLA epitopes per cell respectively. Histograms of the absolute number of CALLA epitopes expressed by individual cells in the populations of CW678, Namalwa, and Nalm-6 cultures were generated by a combined analysis of all the binding data. This is the first example of histograms showing quantitative distribution of antigen epitopes. Previously, the expression of antigens by individual cells as obtained by flow cytometry was only presented in terms of relative fluorescence intensity of individual cells in cell populations.  相似文献   

9.
The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies.  相似文献   

10.
The endocytosis, recycling, and degradation of the insulin receptor were studied in IM-9 cells and U-937 cells by employing two monoclonal antibodies directed at the alpha subunit of the human insulin receptor, antibodies MA-5 and MA-10. Antibody MA-5 is an insulin agonist and MA-10 is an insulin antagonist (Forsayeth, J., Caro, J.F., Sinha, M.K., Maddux, B.A., and Goldfine, I.D. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 3448-3451). Both monoclonal antibodies, like insulin, induced the endocytosis of the insulin receptor within 15 min. Upon removal of extracellular ligand the internalized receptor recycled to the cell surface. At this time there was no degradation of the receptor as measured by a sensitive insulin receptor radioimmunoassay. After 20 h of incubation, insulin and MA-5, but not MA-10, induced significant receptor degradation as measured by both insulin receptor radioimmunoassay and metabolic labeling studies. These studies demonstrated, therefore, that: 1) internalization and recycling of the receptor can be induced by antireceptor monoclonal antibodies that are either insulin agonists or insulin antagonists; 2) enhanced receptor degradation can be induced by monoclonal antibodies that are insulin agonists; and 3) the process of receptor internalization does not necessarily lead to enhanced receptor degradation. Since prior studies have indicated that neither MA-5 nor MA-10 enhance insulin receptor kinase activity, the present studies also suggest that insulin receptor endocytosis and degradation induced by ligands different than insulin can occur without activation of this process.  相似文献   

11.
The sst2A receptor is expressed in the endocrine, gastrointestinal, and neuronal systems as well as in many hormone-sensitive tumors. This receptor is rapidly internalized and phosphorylated in growth hormone-R2 pituitary cells following somatostatin binding (Hipkin, R. W., Friedman, J., Clark, R. B., Eppler, C. M., and Schonbrunn, A. (1997) J. Biol. Chem. 272, 13869-13876). The protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), also stimulates sst2A phosphorylation. Here we examine the mechanisms and consequences of PMA and agonist-induced sst2A phosphorylation. Like somatostatin, both PMA and bombesin increased sst2A receptor phosphorylation within 2 min. The PKC inhibitor GF109203X blocked PMA- and bombesin- stimulated sst2A phosphorylation, whereas stimulation by the somatostatin analog SMS 201-995 was unaffected. Agonist and PMA each stimulated phosphorylation in two receptor domains, the third intracellular loop and the C-terminal tail. Functionally, PMA dramatically increased the internalization of the sst2A receptor-ligand complex. This PMA stimulation was blocked by GF109203X, whereas basal internalization was unaffected. However, neither basal nor PMA-stimulated internalization was altered by pertussis toxin, whereas both were blocked by hypertonic sucrose. Therefore PKC activation and agonist binding stimulate sst2A phosphorylation by distinct mechanisms, and PKC potentiates internalization of the sst2A receptor via clathrin-coated pits. Thus, hormonal stimulation of PKC-coupled receptors may provide a mechanism for regulating the inhibitory actions of somatostatin in target tissue.  相似文献   

12.
Neutral endopeptidase (NEP; E.C. 3.4.24.11) is a mammalian ectopeptidase identified as the common acute lymphoblastic leukemia antigen (CALLA or CD10). In order to investigate its cellular processing and its role in B lymphocyte differentiation, a fluorescent derivative of the mercapto NEP inhibitor thiorphan, N-[fluoresceinyl]-N'-[1-(6-(3-mercapto-2-benzyl-1-oxopropyl) amino-1-hexyl]thiocarbamide (FTI), has been synthesized. The fluorescent characteristics of fluorescein were conserved in FTI after linkage with the thiol NEP inhibitor. FTI inhibited NEP with an IC50 value of 10 nM and a good selectivity compared to that of aminopeptidase N (greater than 100 microM) and angiotensin converting enzyme (32 microM). The FTI probe was shown to detect membrane-bound NEP using photomicroscopy on cultured cells or flow cytometry techniques. Using NEP-expressing MDCK cells and episcopic fluorescence microscopy, a specific labeling was obtained with 100 nM FTI which was completely displaced by 10 microM HACBOGly, a specific and potent inhibitor of NEP. Therefore, FTI can be considered a suitable tool for following cellular NEP traffic. In flow cytometry, the fluorescent probe FTI, used at concentrations as low as 1 nM with Reh6 cells, could be very useful for detecting NEP/CALLA on lymphoid cells. In addition, the recognition of FTI is independent of tissues and species, a major advantage of inhibitors over monoclonal antibodies.  相似文献   

13.
Epitope-directed processing of specific antigen by B lymphocytes   总被引:8,自引:0,他引:8       下载免费PDF全文
Proteolytic processing of specific antigen was studied using Epstein Barr virus transformed B-lymphoblastoid cells expressing membrane IgG against tetanus toxin. As previously reported (Watts, C., and H.W. Davidson. 1988. EMBO (Eur. Mol. Biol. Organ.) J. 7:1937-1945), receptor-mediated endocytosis of monovalent antigen bound at 0 degrees C began immediately upon shifting the cells to 37 degrees C. In contrast, degradation of antigen, assessed either by the release of acid-soluble radiolabel into the incubation medium, or by SDS-PAGE analysis of total cell-associated antigen, proceeded after a lag of 10-20 min. Degradation was abolished by exposure of the cells to metabolic inhibitors, or by incubation at 20 degrees C, and inhibited in a dose-dependent fashion by chloroquine and by the lysosomal protease inhibitors leupeptin, E-64, and pepstatin A. Analysis of the cell-associated radiolabel by SDS-PAGE and autoradiography after incubations at 37 degrees C revealed the time-dependent generation of distinct antigen fragments. Virtually quantitative immunoprecipitation of these fragments was obtained using a monoclonal anti-human IgG antibody, indicating that the antigen/mIg complex is the initial substrate for processing. We show that the pattern of fragmentation observed varies from one B cell line to another (a) depending on the epitope through which the antigen is bound and endocytosed and (b) depending on whether additional epitopes in the antigen are complexed with anti-tetanus Fabs. The implications of these results for the presentation of major histocompatibility complex restricted antigen fragments, and for intracellular trafficking of ligand/receptor complexes are discussed.  相似文献   

14.
The presence of acid proteases in the endosomal compartment of macrophages has been recently demonstrated (Diment, S., Leech, M. S., and Stahl, P. D. (1988) J. Biol. Chem. 263, 6901-6907). This proteolytic activity allows the early degradation of ligands internalized by receptor-mediated endocytosis. To study the early steps that initiate the proteolytic processing of ligands, immune complexes formed with anti-dinitrophenol monoclonal IgG and radiolabeled dinitrophenol-derivatized bovine serum albumin were bound at 4 degrees C to Fc receptors of J774 macrophages. Cells were allowed to internalize immune complexes bound to the plasma membrane for different periods of time at 37 degrees C. Vesicle preparations generated from these cells were incubated in vitro at acidic pH to allow the hydrolysis of ligands located in protease-positive compartments. Ligand hydrolysis was observed after about 5 min of internalization, suggesting that at earlier times immune complexes were located in protease-free vesicles. Upon incubation of cell lysates under conditions that support in vitro endosome-endosome fusion, early protease-free endosomes containing ligand acquire proteolytic activity. Reconstitution of fusion-dependent proteolysis required energy, ions, membrane-associated factors, and cytosol. Cytosol was inactivated by incubation with N-ethylmaleimide. The proteolytic compartment formed upon in vitro incubation colocalized with endosomes in the light region of a Percoll gradient. Reconstitution was also achieved using an endosomal preparation separated from lysosomes in a Percoll gradient. Our results indicate that a fusion step between newly formed endocytic vesicles and a light density, protease-positive compartment triggers the proteolytic processing of ligands internalized by receptor-mediated endocytosis.  相似文献   

15.
It has been recently shown (Larkin, J. M., M. S. Brown, J. L. Goldstein, and R. G. W. Anderson, 1983, Cell, 33:273-285) that after a hypotonic shock followed by incubation in a K+-free medium, human fibroblasts arrest their coated pit formation and therefore arrest receptor-mediated endocytosis of low density lipoprotein. We have used this technique to study the endocytosis of transferrin, diphtheria toxin, and ricin toxin by three cell lines (Vero, Wi38/SV40, and Hep2 cells). Only Hep2 cells totally arrested internalization of [125I]transferrin, a ligand transported by coated pits and coated vesicles, after intracellular K+ depletion. Immunofluorescence studies using anti-clathrin antibodies showed that clathrin associated with the plasma membrane disappeared in Hep2 cells when the level of intracellular K+ was low. In the absence of functional coated pits, diphtheria toxin was unable to intoxicate Hep2 cells but the activity of ricin toxin was unaffected by this treatment. By measuring the rate of internalization of [125I]ricin toxin by Hep2 cells, with and without functional coated pits, we have shown that this labeled ligand was transported in both cases inside the cells. Hep2 cells with active coated pits internalized twice as much [125I]ricin toxin as Hep2 cells without coated pits. Entry of ricin toxin inside the cells was a slow process (8% of the bound toxin per 10 min at 37 degrees C) when compared to transferrin internalization (50% of the bound transferrin per 10 min at 37 degrees C). Using the indirect immunofluorescence technique on permeabilized cells, we have shown that Hep2 cells depleted in intracellular K+ accumulated ricin toxin in compartments that were predominantly localized around the cell nucleus. Our study indicates that in addition to the pathway of coated pits and coated vesicles used by diphtheria toxin and transferrin, another system of endocytosis for receptor-bound molecules takes place at the level of the cell membrane and is used by ricin toxin to enter the cytosol.  相似文献   

16.
Our previous studies have shown that the Galbeta1-3GalNAcalpha- (Thomsen-Friedenreich antigen)-binding lectin from the common edible mushroom Agaricus bisporus (ABL) reversibly inhibits cell proliferation, and this effect is a consequence of inhibition of nuclear localization sequence-dependent nuclear protein import after ABL internalization [Yu, L.G., Fernig, D.G., White, M.R.H., Spiller, D.G., Appleton, P., Evans, R.C., Grierson, I., Smith, J.A., Davies, H., Gerasimenko, O.V., Petersen, O.H., Milton, J.D. & Rhodes, J.M. (1999) J. Biol. Chem. 274, 4890-4899]. Here, we have investigated further the intracellular trafficking and fate of ABL after internalization in HT29 human colon cancer cells. Internalization of 125I-ABL occurred within 30 min of the lectin being bound to the cell surface. Subcellular fractionation after pulse labelling of the cells with 125I-ABL for 2 h at 4 degrees C followed by culture of the cells at 37 degrees C demonstrated a steady increase in radioactivity in a crude nuclear extract. The radioactivity in this extract reached a maximum after 10 h and declined after 20 h. Release of ABL from the cell, after pulse labelling, was assessed using both fluorescein isothiocyanate-labelled ABL and 125I-ABL and was slow, with a t1/2 of 48 h. Most of the 125I-ABL both inside cells and in the medium remained intact, as determined by trichloroacetic acid precipitation and SDS/PAGE, and after 48 h only 22 +/- 2% of ABL in the medium and 14 +/- 2% inside the cells was degraded. This study suggests that the reversibility of the antiproliferative effect of ABL is associated with its release from cells after internalization. The internalization and subsequent slow release, with little degradation of ABL, reflects the tendency of lectins to resist biodegradation and implies that other endogenous or exogenous lectins may be processed in this way by intestinal epithelial cells.  相似文献   

17.
We have previously demonstrated that the human insulin receptor, mutated in the ATP-binding domain of the beta-subunit, is kinase-defective and fails to mediate multiple post-receptor actions of insulin in stably transfected Chinese hamster ovary cells (Chou, C.-K., Dull, T. J., Russell, D. S., Gherzi, R., Lebwohl, D., Ullrich, A., and Rosen, O. M. (1987) J. Biol. Chem. 262, 1842-1847). This study addresses the role of protein-tyrosine kinase activity in insulin-mediated receptor down-regulation. Although the mutant insulin proreceptor was properly processed and able to bind insulin like the wild-type human receptor, it differed from the latter in the following respects: 1) it failed to mediate internalization of surface-bound radiolabeled ligand; 2) it did not undergo short- or long-term down-regulation in response to 1 microM insulin; 3) it did not exhibit ligand-promoted receptor turnover; and 4) it was not phosphorylated on either tyrosine or serine residues in response to insulin. Although the cells transfected with the mutant receptor failed to respond to insulin-mediated insulin receptor down-regulation, they were able to down-regulate their insulin-like growth factor I receptors in response to insulin-like growth factor I or high concentrations of insulin and were sensitive to monoclonal antibody-induced down-regulation of their insulin receptors. Antibody-mediated receptor internalization alone, however, was unable to mimic at least one action of insulin, thymidine incorporation into DNA, and did not lead to any phosphorylation of the receptor. It is concluded that either the protein-tyrosine kinase activity of the insulin receptor or its phosphorylation state is essential for ligand-mediated receptor down-regulation.  相似文献   

18.
The growth factor interleukin 2 (IL2) binds to and is internalized together with high-affinity surface receptors present on lymphoid cells. This endocytosis thus results in down-regulation of the receptors. However, it is not known if the internalization is relevant to the induction of cell growth. In the present study a rat monoclonal antibody to the P55 chain of the IL2 receptor was used to examine the role of receptor internalization in the IL2-dependent autocrine human tumor T cell line IARC 301. When given alone, this antibody did not inhibit IL2 binding, internalization, or IL2-dependent cell proliferation. However, crosslinking by anti-rat immunoglobulins, which did not affect binding of the growth factor, inhibited both IL2 internalization and cell proliferation. Besides offering a novel means for the specific inhibition of the uptake of IL2 bound to IL2 high-affinity receptors, the results are compatible with the association of this receptor-ligand uptake to the growth stimulation by IL2.  相似文献   

19.
We have used defined subcellular fractions to reconstitute in a cell-free system vesicle fusions occurring in the endocytic pathway. The endosomal fractions were prepared by immuno-isolation using as antigen an epitope located on a foreign protein, the transmembrane glycoprotein G (G-protein) of vesicular stomatitis virus. The G-protein was first implanted in the cell plasma membrane and subsequently endocytosed for 15 to 30 min at 37 degrees C. The endosomal fractions were immuno-isolated on a solid support using as antigen the cytoplasmic domain of the G-protein in combination with a specific monoclonal antibody. For comparative studies the plasma membrane was immuno-isolated from cells in the absence of G internalization with a monoclonal antibody against the exoplasmic domain of the G-protein. The immuno-isolated endosomal vesicles contained 70% of horseradish peroxidase internalized in the endosome fluid phase, exhibited an acidic luminal pH as shown by acridine orange fluorescence and differed in their protein composition from the immuno-isolated plasma membrane fraction. The fusion of endocytic vesicles originating from different stages of the pathway was studied in a cell-free assay using both a bio-chemical and a morphological detection system. These well defined endosomal vesicles were immuno-isolated with the G-protein on the solid support and provided the recipient compartment of the fusion (acceptor). They were mixed with a post-nuclear supernatant containing endosomes loaded with exogenous lactoperoxidase (donor) at 37 degrees C. Fusion delivered the donor peroxidase to the lumen of acceptor vesicles permitting fusion-specific iodination of the G-protein itself. The fusion of vesicles required ATP and was detected only with an endosomal fraction prepared after internalization of the G-protein for 15 min at 37 degrees C but not with a plasma membrane or with an endosomal fraction prepared after 30 min G-protein internalization.  相似文献   

20.
It has been reported that the sequence Tyr20-X-Arg-Phe23 present within the cytoplasmic tail of the transferrin receptor may represent a tyrosine internalization signal (Collawn, J.F., Stangel, M., Kuhn, L.A., Esekogwu, V., Jing, S., Trowbridge, I.S., and Tainer, J. A. (1990) Cell 63, 1061-1072). However, as Tyr20 is not conserved between species (Alvarez, E., Gironès, N., and Davis, R. J. (1990) Biochem. J. 267, 31-35), the functional role of the putative tyrosine internalization signal is not clear. To address this question, we constructed a series of 32 deletions and point mutations within the cytoplasmic tail of the human transferrin receptor. The effect of these mutations on the apparent first order rate constant for receptor endocytosis was examined. It was found that the region of the cytoplasmic tail that is proximal to the transmembrane domain (residues 28-58) is dispensable for rapid endocytosis. In contrast, the distal region of the cytoplasmic tail (residues 1-27) was found to be both necessary and sufficient for the rapid internalization of the transferrin receptor. The region identified includes Tyr20-X-Arg-Phe23, but is significantly larger than this tetrapeptide. It is therefore likely that structural information in addition to the proposed tyrosine internalization signal is required for endocytosis. To test this hypothesis, we investigated whether a heterologous tyrosine internalization signal (from the low density lipoprotein receptor) could function to cause the rapid endocytosis of the transferrin receptor. It was observed that this heterologous tyrosine internalization signal did not allow rapid endocytosis. We conclude that the putative tyrosine internalization signal (Tyr20-Thr-Arg-Phe23) is not sufficient to determine rapid endocytosis of the transferrin receptor. The data reported here indicate that the transferrin receptor internalization signal is formed by a larger cytoplasmic tail structure located at the amino terminus of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号