首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Several studies in the literature suggest that low-protein intake is associated with increases in sympathetic efferent activity and cardiovascular disease. Among the possible mechanisms, changes in the neurotransmission of cardiovascular reflexes have been implicated. Therefore, the present study comprised the evaluation of chemoreflex responsiveness in rats subjected to a low-protein diet during the 35 days after weaning. As a result, we observed that malnourished rats presented higher levels of baseline mean arterial pressure and heart rate and exhibited a mild increase in the pressor response to chemoreflex activation. They also exhibited a massive bradycardic response to chemoreflex activation. Interestingly, bilateral ligature of the carotid body arteries further increased baseline mean arterial pressure and heart rate in malnourished animals. The data suggest severe autonomic imbalance and/or change in the central interplay between neural and cardiovascular mechanisms.  相似文献   

2.
Sildenafil induces vasodilation and is used for treating erectile dysfunction. Although its influence on resting heart function appears to be minimal, recent studies suggest that sildenafil can increase sympathetic activity. We therefore tested whether sildenafil injected into the central nervous system alters the autonomic control of the cardiovascular system in conscious rats. The effect of sildenafil citrate injected into the lateral cerebral ventricle was evaluated in conscious rats by means of the recording of lumbar sympathetic nerve activity (LSNA), spectral analysis of systolic arterial pressure and heart rate variability, spontaneous baroreflex sensitivity, and baroreflex control of LSNA. Intracerebroventricular (ICV, 100 microg /5 microl) administration of sildenafil caused remarkable tachycardia without significant change in basal arterial pressure and was associated with a conspicuous increase (47 +/- 14%) in LSNA. Spectral analysis demonstrated that systolic arterial pressure oscillations in the low frequency (LF) range were increased (from 6.3 +/- 1.5 to 12.8 +/- 3.8 mmHg(2)), whereas the high frequency (HF) range was not affected by ICV administration of sildenafil. Sildenafil increased pulse interval oscillations at LF and decreased them at HF. The LF-HF ratio increased from 0.04 +/- 0.01 to 0.17 +/- 0.06. Spontaneous baroreflex sensitivity measured by the sequence method and the baroreflex relationship between mean arterial pressure and LSNA were not affected by ICV administration of sildenafil. In conclusion, sildenafil elicited an increase in sympathetic nerve activity that is not baroreflex mediated, suggesting that this drug is able to elicit an autonomic imbalance of central origin. This finding may have implications for understanding the cardiovascular outcomes associated with the clinical use of this drug.  相似文献   

3.
The effect of thyroid status on arterial baroreflex function and autonomic contributions to resting blood pressure and heart rate (HR) were evaluated in conscious rats. Rats were rendered hyperthyroid (Hyper) or hypothyroid (Hypo) with triiodothyronine and propylthiouracil treatments, respectively. Euthyroid (Eut), Hyper, and Hypo rats were chronically instrumented to measure mean arterial pressure (MAP), HR, and lumbar sympathetic nerve activity (LSNA). Baroreflex function was evaluated with the use of a logistic function that relates LSNA or HR to MAP during infusion of phenylephrine and sodium nitroprusside. Contributions of the autonomic nervous system to resting MAP and HR were assessed by blocking autonomic outflow with trimethaphan. In Hypo rats, the arterial baroreflex curve for both LSNA and HR was shifted downward. Hypo animals exhibited blunted sympathoexcitatory and tachycardic responses to decreases in MAP. Furthermore, the data suggest that in Hypo rats, the sympathetic influence on HR was predominant and the autonomic contribution to resting MAP was greater than in Eut rats. In Hyper rats, arterial baroreflex function generally was similar to that in Eut rats. The autonomic contribution to resting MAP was not different between Hyper and Eut rats, but predominant parasympathetic influence on HR was exhibited in Hyper rats. The results demonstrate baroreflex control of LSNA and HR is attenuated in Hypo but not Hyper rats. Thyroid status alters the balance of sympathetic to parasympathetic tone in the heart, and the Hypo state increases the autonomic contributions to resting blood pressure.  相似文献   

4.
Acetylcholine receptors (AChR) are important in premotor and efferent control of autonomic function; however, the extent to which cardiovascular function is affected by genetic variations in AChR sensitivity is unknown. We assessed heart rate variability (HRV) and baroreflex sensitivity (BRS) in rats bred for resistance (FRL) or sensitivity (FSL) to cholinergic agents compared with Sprague-Dawley rats (SD), confirmed by using hypothermic responses evoked by the muscarinic agonist oxotremorine (0.2 mg/kg i.p.) (n > or = 9 rats/group). Arterial pressure, ECG, and splanchnic sympathetic (SNA) and phrenic (PNA) nerve activities were acquired under anesthesia (urethane 1.3 g/kg i.p.). HRV was assessed in time and frequency domains from short-term R-R interval data, and spontaneous heart rate BRS was obtained by using a sequence method at rest and after administration of atropine methylnitrate (mATR, 2 mg/kg i.v.). Heart rate and SNA baroreflex gains were assessed by using conventional pharmacological methods. FRL and FSL were normotensive but displayed elevated heart rates, reduced HRV and HF power, and spontaneous BRS compared with SD. mATR had no effect on these parameters in FRL or FSL, indicating reduced cardiovagal tone. FSL exhibited reduced PNA frequency, longer baroreflex latency, and reduced baroreflex gain of heart rate and SNA compared with FRL and SD, indicating in FSL dual impairment of cardiac and circulatory baroreflexes. These findings show that AChR resistance results in reduced cardiac muscarinic receptor function leading to cardiovagal insufficiency. In contrast, AChR sensitivity results in autonomic and respiratory abnormalities arising from alterations in central muscarinic and or other neurotransmitter receptors.  相似文献   

5.
Chronic ethanol intake and hypertension are related. In the present work, we investigated the effect of chronic ethanol (20% v/v) intake for 2, 6 and 10 weeks on basal arterial blood pressure, baroreflex and heart rate levels, as well as on the cardiovascular responses to the infusion of vasoactive agents in unanesthetized rats. Mild hypertension was observed after 2 weeks, 6 weeks or 10 weeks of treatment. On the other hand, no changes were observed in heart rate after long-term ethanol intake. Similar baroreflex changes were observed in 2- or 6-week ethanol-treated rats, and affected all parameters of baroreflex sigmoid curves, when compared to the control group. These changes were characterized by an enhanced baroreflex sympathetic component and a reduction in the baroreflex parasympathetic component. No differences in baroreflex parameters were observed in 10-week ethanol-treated animals. The pressor effects of i.v. phenylephrine were enhanced in 2-week ethanol-treated rats; not affected in 6-week treated animals and reduced in 10-week ethanol-treated rats, when compared to respective control and isocaloric groups. The hypotensive response to i.v. sodium nitroprusside (SNP) was enhanced at all different times of treatment, when compared to respective control and isocaloric groups. In conclusion, the present findings showed increased arterial pressure in the early phase of chronic ethanol consumption, which was consequent of rise in both systolic and diastolic pressures. Ethanol intake affected both the sympathetic and the parasympathetic components of the baroreflex. Vascular responsiveness to the pressor agent phenylephrine was initially enhanced and later on decreased during chronic ethanol intake. Vascular responsiveness to the depressor agent SNP was enhanced during chronic ethanol intake.  相似文献   

6.
Bilateral removal of the olfactory lobes in rats produces a number of behavioral, endocrine, and neurochemical alterations in the brain. Little is known, however, regarding the effects of this treatment on cardiovascular function and autonomic reflexes. Male Sprague-Dawley rats underwent bilateral surgical ablation of the olfactory bulbs (n = 10) or were sham operated (n = 8). After 3 wk of recovery, animals were instrumented with femoral catheters and a lumbar sympathetic nerve recording electrode. After 24 h of recovery, cardiovascular responses to arterial baroreflex manipulation, air jet stress, and smoke exposure were recorded. Olfactory bulbectomized rats demonstrated attenuated sympathoexcitatory responses to hypotension, air jet stress, and smoke exposure, as well as elevated basal blood pressure, compared with sham-operated rats. These data indicate that the integrity of the olfactory bulbs in rats is important for the elicitation of normal cardiovascular and autonomic responses to a number of evocative stimuli.  相似文献   

7.
Oxytocin (OT) has been implicated in the cardiovascular responses to exercise, stress, and baroreflex adjustments. Studies were conducted to determine the effect of genetic manipulation of the OT gene on blood pressure (BP), heart rate (HR), and autonomic/baroreflex function. OT knockout (OTKO -/-) and control +/+ mice were prepared with chronic arterial catheters. OTKO -/- mice exhibited a mild hypotension (102 +/- 3 vs. 110 +/- 3 mmHg). Sympathetic and vagal tone were tested using beta(1)-adrenergic and cholinergic blockade (atenolol and atropine). Magnitude of sympathetic and vagal tone to the heart and periphery was not significantly different between groups. However, there was an upward shift of sympathetic tone to higher HR values in OTKO -/- mice. This displacement combined with unchanged basal HR led to larger responses to cholinergic blockade (+77 +/- 25 vs. +5 +/- 15 beats/min, OTKO -/- vs. control +/+ group). There was also an increase in baroreflex gain (-13.1 +/- 2.5 vs. -4.1 +/- 1.2 beats x min(-1) x mmHg(-1), OTKO -/- vs. control +/+ group) over a smaller BP range. Results show that OTKO -/- mice are characterized by 1) hypotension, suggesting that OT is involved in tonic BP maintenance; 2) enhanced baroreflex gain over a small BP range, suggesting that OT extends the functional range of arterial baroreceptor reflex; and 3) shift in autonomic balance, indicating that OT reduces the sympathetic reserve.  相似文献   

8.
Neurons within the dorsomedial hypothalamic nucleus (DMH) and perifornical area (PeF), which lie within the classic hypothalamic defense area, subserve the cardiovascular response to psychological stress. Previous studies have shown that electrical stimulation of the hypothalamic defense area causes inhibition of the cardiac and (in some cases) sympathetic components of the baroreceptor reflex. In contrast, naturally evoked psychological stress does not appear to be associated with such inhibition. In this study, we tested the effect of specific activation of neurons within the DMH and PeF on the baroreflex control of renal sympathetic nerve activity and heart rate in urethane-anesthetized rats. Microinjection of bicuculline (a GABA(A) receptor antagonist) into the DMH caused dose-dependent increases in heart rate and renal sympathetic activity, shifted the baroreflex control of both variables to higher levels (i.e., increased the upper and lower plateaus of the baroreflex function curves, and increased the threshold, midpoint, and saturation levels of mean arterial pressure). The maximum gain of the sympathetic component of the baroreflex was also increased, while that of the cardiac component was not significantly changed. Increases in the midpoint were very similar in magnitude to the evoked increases in baseline mean arterial pressure. Microinjection of bicuculline into the PeF evoked very similar effects. The results indicate that disinhibition of neurons in the DMH/PeF region not only increases sympathetic vasomotor activity and heart rate but also resets the baroreceptor reflex such that it remains effective, without any decrease in sensitivity, over a higher operating range of arterial pressure.  相似文献   

9.
The renal medulla plays an important role in cardiovascular regulation, through interactions with the autonomic nervous system. Hydronephrosis is characterized by substantial loss of renal medullary tissue. However, whether alterations in autonomic control of the heart are observed in this condition is unknown. Thus we assessed resting hemodynamics and baroreflex sensitivity (BRS) for control of heart rate in urethane/chloralose-anesthetized Sprague-Dawley rats with normal or hydronephrotic kidneys. While resting arterial pressure was similar, heart rate was higher in rats with hydronephrosis (290 ± 12 normal vs. 344 ± 11 mild/moderate vs. 355 ± 13 beats/min severe; P < 0.05). The evoked BRS to increases, but not decreases, in pressure was lower in hydronephrotic rats (1.06 ± 0.06 normal vs. 0.72 ± 0.10 mild/moderate vs. 0.63 ± 0.07 ms/mmHg severe; P < 0.05). Spectral analysis methods confirmed reduced parasympathetic function in hydronephrosis, with no differences in measures of indirect sympathetic activity among conditions. As a secondary aim, we investigated whether autonomic dysfunction in hydronephrosis is associated with activation of the renin-angiotensin system (RAS). There were no differences in circulating angiotensin peptides among conditions, suggesting that the impaired autonomic function in hydronephrosis is independent of peripheral RAS activation. A possible site for angiotensin II-mediated BRS impairment is the solitary tract nucleus (NTS). In normal and mild/moderate hydronephrotic rats, NTS administration of the angiotensin II type 1 receptor antagonist candesartan significantly improved the BRS, suggesting that angiotensin II provides tonic suppression to the baroreflex. In contrast, angiotensin II blockade produced no significant effect in severe hydronephrosis, indicating that at least within the NTS baroreflex suppression in these animals is independent of angiotensin II.  相似文献   

10.
The efferent mechanisms by which central administration of corticotropin-releasing factor (CRF) elevates mean arterial pressure and heart rate were assessed in unanesthetized, unrestrained rats. CRF increased blood pressure and heart rate by stimulating noradrenergic sympathetic nervous outflow. CRF-induced cardiovascular changes were not dependent on anterior pituitary hormone release, adrenomedullary epinephrine secretion, the renin-angiotensin system or circulating vasopressin.  相似文献   

11.
The arterial baroreflex contributes importantly to the short-term regulation of blood pressure and cardiovascular variability. A number of factors (including reflex, humoral, behavioral, and environmental) may influence gain and effectiveness of the baroreflex, as well as cardiovascular variability. Many central neural structures are also involved in the regulation of the cardiovascular system and contribute to the integrity of the baroreflex. Consequently, brain injuries or ischemia may induce baroreflex impairment and deranged cardiovascular variability. Baroreflex dysfunction and deranged cardiovascular variability are also common findings in cardiovascular disease. A blunted baroreflex gain and impaired heart rate variability are predictive of poor outcome in patients with heart failure and myocardial infarction and may represent an early index of autonomic activation in left ventricular dysfunction. The mechanisms mediating these relationships are not well understood and may in part be the result of cardiac structural changes and/or altered central neural processing of baroreflex signals.  相似文献   

12.
The hemodynamic responses to vasoconstrictor agents are blunted during heating in anesthetized rats. It is unknown whether reflex neural responses to these agents are also altered during hyperthermia. Therefore, the purpose of this study was to determine the effect of hyperthermia on the hemodynamic and baroreflex-mediated sympathetic neural responses to vasoactive agents in conscious, unrestrained rats. The splanchnic sympathetic nerve activity (SpNA) and systemic and regional hemodynamic responses to injections of phenylephrine and sodium nitroprusside were measured during normothermia (37 degrees C) and hyperthermia (41.5 degrees C). The hemodynamic responses to phenylephrine and sodium nitroprusside were blunted with heating, whereas the SpNA responses to both agents were augmented or unchanged. At 41.5 degrees C, the baroreflex curves relating heart rate (HR) and SpNA to mean arterial blood pressure were shifted to the right. The operating range and gain of the blood pressure (BP)-HR reflex were significantly reduced during heating, whereas the operating range of the BP-SpNA reflex was augmented at 41.5 degrees C. These results indicate that heating alters the cardiovascular and sympathetic neural responses to vasoactive agents in vivo. Furthermore, the data suggest that heating differentially affects arterial baroreflex control of HR and SpNA, shifting both curves toward higher BP values but selectively attenuating baroreflex control of HR.  相似文献   

13.
A mathematical model of short-term cardiovascular regulation is used to investigate how heart period variability reflects the action of the autonomic regulatory mechanisms (vagal and sympathetic). The model includes the pulsating heart, the systemic (splanchnic and extrasplanchnic) and pulmonary circulation, the mechanical effect of respiration on venous return, two groups of receptors (arterial baroreceptors and lung stretch receptors), the sympathetic and vagal efferent branches, and a very low-frequency (LF) vasomotor noise. All model parameters were given on the basis of physiological data from the literature. We used data from humans whenever possible, whereas parameters for the regulation loops are derived from dog experiments. The model, with basal parameter values, produces a heart period power spectrum with two distinct peaks [a high frequency (HF) peak at the respiratory rate and a LF peak at approximately 0.1 Hz]. Sensitivity analysis on the mechanism gains suggests that the HF peak is mainly affected by the vagal mechanism, whereas the LF peak is increased by a high sympathetic gain and reduced by a high vagal gain. Moreover, the LF peak depends significantly on the reactivity of resistance vessels and is affected by noise, amplified by the sympathetic control loop at its resonance frequency. The model may represent a new tool to study alterations in the heart period spectrum on the basis of quantitative physiological hypotheses.  相似文献   

14.
Endothelin 1 (ET-1) is increased in heart failure, both in plasma and within the central nervous system. Centrally, ET-1 induces sympathetic hyperactivity and arginine vasopressin (AVP) secretion. Both sympathetic activity and AVP secretion are regulated by the arterial baroreflex, which is typically impaired in heart failure. We hypothesized that central blockade of ETA receptors (ETAR) alters the baroreflex response of heart rate, renal sympathetic nerve activity (RSNA), and plasma AVP levels in a cardiomyopathic model of heart failure. Female Sprague-Dawley rats received weekly intraperitoneal injections of doxorubicin 2.5 mg x kg(-1) (doxorubicin heart failure, doxo-HF) or saline vehicle (control). After 8 weeks, they were instrumented, conditioned to the study environment, and then studied in the awake, non-restrained state. Baseline mean arterial pressure (MAP), RSNA, and plasma osmolality were similar in both groups, but heart rate (p<0.02), left ventricular pressure (p<0.001), and plasma AVP (p<0.01) were higher in the doxo-HF group. ET-1 dose dependently increased MAP, but the rise was significantly attenuated in doxo-HF rats at all doses. Baseline baroreflex control of heart rate and RSNA was similar in both groups. ETAR blockade with 4 nmol BQ123 i.c.v. significantly decreased both the upper plateau (p<0.05) and the range (p<0.05) of the baroreflex response of both heart rate and RSNA in doxo-HF but not in control rats. Despite higher basal plasma levels of AVP, ET-1 evoked a rise in plasma AVP of 13.6+/-3.2 pg x mL(-1) in doxo-HF compared with 0.4+/-0.4 pg x mL(-1) in control rats (p<0.001). To account for the blunted pressor response to ET-1 in the doxo-HF rats, gain of AVP release was calculated as DeltaAVP/DeltaMAP and was also found to be significantly greater in the doxo-HF rats (p<0.001). BQ123 prevented the rise in AVP and restored the gain in doxo-HF rats to that seen in controls. Thus, central ETAR contribute to the sympathoexcitation and AVP responses observed in heart failure due to doxorubicin cardiomyopathy.  相似文献   

15.
Aging is associated with complex and diversified changes of cardiovascular structure and function. The heart becomes slightly hypertrophic and hyporesponsive to sympathetic (but not parasympathetic) stimuli, so that the exercise-induced increases in heart rate and myocardial contractility are blunted in older hearts. The aorta and major elastic arteries become elongated and stiffer, with increased pulse wave velocity, evidence of endothelial dysfunction, and biochemical patterns resembling early atherosclerosis. The arterial baroreflex is sizably altered in aging, but different components are differentially affected: there is a definite impairment of arterial baroreceptor control of the heart but much better preserved baroreceptor control of peripheral vascular resistance. Alterations at the afferent, central neural, efferent, and effector organ portions of the reflex arch have been claimed to account for age-related baroreflex changes, but no conclusive evidence is available on this mechanistic aspect. Reflexes arising from cardiopulmonary vagal afferents are also blunted in aged individuals. The cardiovascular and reflex changes brought about by aging may have significant implications for circulatory homeostasis in health and disease.  相似文献   

16.
Baroreflex control of cardiovascular parameters was studied in control, atropine- and guanethidine-treated rats. Baroreceptor activity was tested by the relationship between the increase in blood pressure produced by a phenylephrine administration (bolus ov infusion) and the induced bradycardia. No differences were observed in basal arterial blood pressure and heart rate between treated- and control rats. Baroreceptor sensitivity was lower in atropine- or guanethidine-treated rats than in control animals. Baroreceptor activity has two components: a first, rapid, predominantly parasympathetic and a second, slower, that is mediated by both parasympathetic and sympathetic efferent pathways.  相似文献   

17.
Concomitant use of anabolic androgenic steroids and cocaine has increased in the last years. However, the effects of chronic exposure to these substances during adolescence on cardiovascular function are unknown. Here, we investigated the effects of treatment for 10 consecutive days with testosterone and cocaine alone or in combination on basal cardiovascular parameters, baroreflex activity, hemodynamic responses to vasoactive agents, and cardiac morphology in adolescent rats. Administration of testosterone alone increased arterial pressure, reduced heart rate (HR), and exacerbated the tachycardiac baroreflex response. Cocaine-treated animals showed resting bradycardia without changes in arterial pressure and baroreflex activity. Combined treatment with testosterone and cocaine did not affect baseline arterial pressure and HR, but reduced baroreflex-mediated tachycardia. None of the treatments affected arterial pressure response to either vasoconstrictor or vasodilator agents. Also, heart to body ratio and left and right ventricular wall thickness were not modified by drug treatments. However, histological analysis of left ventricular sections of animals subjected to treatment with testosterone and cocaine alone and combined showed a greater spacing between cardiac muscle fibers, dilated blood vessels, and fibrosis. These data show important cardiovascular changes following treatment with testosterone in adolescent rats. However, the results suggest that exposure to cocaine alone or combined with testosterone during adolescence minimally affect cardiovascular function.  相似文献   

18.
Systemic corticosterone (Cort) modulates arterial baroreflex control of both heart rate and renal sympathetic nerve activity. Because baroreceptor afferents terminate in the dorsal hindbrain (DHB), an area with dense corticosteroid receptor expression, we tested the hypothesis that prolonged activation of DHB Cort receptors increases the midpoint and reduces the gain of arterial baroreflex control of heart rate in conscious rats. Small (3-4 mg) pellets of Cort (DHB Cort) or Silastic (DHB Sham) were placed on the surface of the DHB, or Cort was administered systemically by placing a Cort pellet on the surface of the dura (Dura Cort). Baroreflex control of heart rate was determined in conscious male Sprague Dawley rats on each of 4 days after initiation of treatment. Plots of arterial pressure vs. heart rate were analyzed using a four-parameter logistic function. After 3 days of treatment, the arterial pressure midpoint for baroreflex control of heart rate was increased in DHB Cort rats (123 +/- 2 mmHg) relative to both DHB Sham (108 +/- 3 mmHg) and Dura Cort rats (109 +/- 2 mmHg, P < 0.05). On day 4, baseline arterial pressure was greater in DHB Cort (112 +/- 2 mmHg) compared with DHB Sham (105 +/- 2 mmHg) and Dura Cort animals (106 +/- 2 mmHg, P < 0.05), and the arterial pressure midpoint was significantly greater than mean arterial pressure in the DHB Cort group only. Also on day 4, maximum baroreflex gain was reduced in DHB Cort (2.72 +/- 0.12 beats x min(-1) x mmHg(-1)) relative to DHB Sham and Dura Cort rats (3.51 +/- 0.28 and 3.37 +/- 0.27 beats x min(-1) x mmHg(-1), P < 0.05). We conclude that Cort acts in the DHB to increase the midpoint and reduce the gain of the heart rate baroreflex function.  相似文献   

19.
Aging is associated with altered autonomic control of cardiovascular function, but baroreflex function in animal models of aging remains controversial. In this study, pressor and depressor agent-induced reflex bradycardia and tachycardia were attenuated in conscious old (24 mo) rats [57 and 59% of responses in young (10 wk) Wistar rats, respectively]. The intrinsic heart rate (HR, 339 +/- 5 vs. 410 +/- 10 beats/min) was reduced in aged animals, but no intergroup differences in resting mean arterial blood pressure (MAP, 112 +/- 3 vs. 113 +/- 5 mmHg) or HR (344 +/- 9 vs. 347 +/- 9 beats/min) existed between old and young rats, respectively. The aged group also exhibited a depressed (49%) parasympathetic contribution to the resting HR value (vagal effect) but preserved sympathetic function after intravenous methylatropine and propranolol. An implantable electrode revealed tonic renal sympathetic nerve activity (RSNA) was similar between groups. However, old rats showed impaired baroreflex control of HR and RSNA after intravenous nitroprusside (-0.63 +/- 0. 18 vs. -1.84 +/- 0.4 bars x cycle(-1) x mmHg(-1) x s(-1)). Therefore, aging in rats is associated with 1) preserved baseline MAP, HR, and RSNA, 2) impaired baroreflex control of HR and RSNA, and 3) altered autonomic control of resting HR.  相似文献   

20.
Although baroreceptors are known to reset to operate in a higher pressure range in spontaneously hypertensive rats (SHR), the total profile of dynamic arterial pressure (AP) regulation remains to be clarified. We estimated open-loop transfer functions of the carotid sinus baroreflex in SHR and Wistar Kyoto (WKY) rats. Mean input pressures were set at 120 (WKY??? and SHR???) and 160 mmHg (SHR???). The neural arc transfer function from carotid sinus pressure to efferent splanchnic sympathetic nerve activity (SNA) revealed derivative characteristics in both WKY and SHR. The slope of dynamic gain (in decibels per decade) between 0.1 and 1 Hz was not different between WKY??? (10.1 ± 1.0) and SHR??? (10.4 ± 1.1) but was significantly greater in SHR??? (13.2 ± 0.8, P < 0.05 with Bonferroni correction) than in SHR???. The peripheral arc transfer function from SNA to AP showed low-pass characteristics. The slope of dynamic gain (in decibels per decade) did not differ between WKY??? (-34.0 ± 1.2) and SHR??? (-31.4 ± 1.0) or between SHR??? and SHR??? (-32.8 ± 1.3). The total baroreflex showed low-pass characteristics and the dynamic gain at 0.01 Hz did not differ between WKY??? (0.91 ± 0.08) and SHR??? (0.84 ± 0.13) or between SHR??? and SHR??? (0.83 ± 0.11). In both WKY and SHR, the declining slope of dynamic gain was significantly gentler for the total baroreflex than for the peripheral arc, suggesting improved dynamic AP response in the total baroreflex. In conclusion, the dynamic characteristics of AP regulation by the carotid sinus baroreflex were well preserved in SHR despite significantly higher mean AP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号